Preconditioning and Locality
In Algorithm Design

Jason LI
PhD Thesis



Problems Studied

Graph cut problems

- Mincut: edge/vertex, undirected/directed, global/terminal/all-pairs




Problems Studied

Graph cut problems

- Mincut: edge/vertex, undirected/directed, global/terminal/all-pairs

G GO &

cut of minimum size/weight
expander

{258
.’ expa nder
expander
expande

- Conductance and expander decomposition

expander




Problems Studied
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- Mincut: edge/vertex, undirected/directed, global/terminal/all-pairs
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expander
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-
Graph distance problems ‘

- Approximate shortest path, transshipment, L1 embedding (PRAM model)

- Conductance and expander decomposition

expander
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Preconditioning and Locality

Preconditioning: worst case vs. average case

- Assume that the input is random

- expander (graph cut problems), low aspect ratio (distance)
- Reduce to random instances

- expander decomposition

\/fecursion

remaining graph
- Popularized by Spielman and Teng [ST'04] on Laplacian system solvers
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Preconditioning and Locality

- Local algorithms: explore a small neighborhood around v
- Run in time ~ smaller side of cut @

- e.g. PageRank Nibble for computing approximate conductance
- This talk: locality as a principle in algorithm design

Locality: unbalanced vs. balanced

- Assume that the target solution is local to some vertex
- e.g. mincut cuts a small neighborhood around v

- Reduce to unbalanced instances
- Straight reduction, or handle balanced case separately
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he Case For Preconditioning and Locality

Preconditioning Locality

Powerful
- Resolves fundamental open problems

current fastest... current fastest...

det. exp. decomp.

Steiner mincut

det. Steiner

vertex mincut

parallel SSSP mincut
" all pairs mincut)
Versatile dor. Sinis] alBbrox M ree”

transshipment

- Applicable to all types of graph problems mincut

directed mincut‘/

Cutting-edge
- Mostly unexplored in the past => future potential
- Some results are remarkably simple

- All tools were around 40+ years ago, was only missing perspective
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Problems Studied in Talk

Locality:
- Minimum Isolating Cuts problem

= simple, fastest Steiner mincut algorithm
= simple, fastest single-source mincut algorithm

- Directed mincut: simple, fastest algorithm

Preconditioning:

- Deterministic mincut: first almost-linear time algorithm
- simple on expanders




Part I: Locality

1. Steiner mincut
2. Directed mincut
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Steiner Mincut

Given a graph and a set R of terminals, find the mincut
that separates at least two terminals ?
- Generalizes s-t mincut: R = {s,t} ’

- Generalizes global mincut: R =V
- Useful subroutine for GH tree,

6(m+nc2) algorithm [Bhalgat-Cole-Hariharan-Panigrahi ‘07]

Leap of faith: assume that Steiner mincut is unbalanced
- 1 terminal on one side?

Can be reduced to this case! (random sampling)
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Steiner Mincut

Theorem: unbalanced Steiner mincut can be solved in

polylog(n) max-flow calls

- Minimum Isolating Cuts: new problem capturing the
locality assumption

- Simple algorithm in O(log n) max-flows

Theorem: (general) Steiner mincut can be solved in
polylog(n) max-flow calls
- Simple random sampling: reduce to unbalanced!
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Given a graph and a set R of terminals,
find, for each terminal v, the mincut S, that

Isolates that terminal

Trivial: IR| s-t mincuts
[L.-Panigrahi ‘20] O(log IRI) s-t mincuts suffice!

— unbalanced Steiner mincut in O(log IRl) max-flows

Reduce general Steiner mincut to unbalanced: ¢
Sample at rate 1/2, 1/4, 1/8, ...

' I
If sample at rate ~ =, then
constant prob. success
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Minimum Isolating Cuts

ldea: compute an “upper bound” for each isolating cut
+ 2S5, YvekR

o (, are disjoint

S, is the s-t mincut

For each veR, run max-flow on graph with V\S, contracted

Each edge in at most 2 such graphs => total size < 2m
=> max-flow time on O(n) vertices, O(m) edges
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- Compute log IRl bipartitions ofR, (X, Y|/ ’ 'V
= \

- Want: each pair s,t in R is separated =
In at least one of them

7\ /
’ < - N

- For each k, compute (X kr Yk)-min-cut
Claim: Union of min-cuts separates all of R
Upper Bound Lemma:

In G\(union of mincuts), v's connected
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Proof: submodularlty/uncrossmg
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Minimum Isolating Cuts

- Compute log IRl bipartitions ofR, (X, Y|
- Want: each pair s,t in R is separated
In at least one of them
- For each k, compute (Xk, Yk)-min-cut
Claim: Union of min-cuts separates all of R

Upper Bound Lemma:
In G\(union of mincuts), v's connected
component contains (v, R\v)-mincut

Proof: submodularity/uncrossing

S
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Minimum Isolating Cuts: Applications

[L.-Panigrahi ‘21]: All-pairs mincut and Gomory-Hu tree:
(1+¢)-approximation in polylog(n) exact max-flows

[L.-Nanongkai-Panigrahi-Saranurak-Yingchareonthawornchai ‘21]
vertex connectivity in polylog(n) max-flows

[Chekuri-Quanrud, Mukhopadhyay-Nanongkai ‘21]
Symmetric bisubmodular function minimization,
hypergraph connectivity, element connectivity
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Directed Mincut
Directed mincut: partition (S, V\S) s.t. no directed edge from S to V\S

Much harder than undirected: @
- Karger's randomized contraction doesn’t work S
- Sparsifiers for directed graphs are hard/impossible

Previous best: S(mn) [Hao-Orlin"94]

[Cen-L.-Nanongkai-Panigrahi-Saranurak] yn max-flows =O(mJn+n?)
This talk: (1+¢&)-approximation
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Directed Mincut

Why are directed sparsifiers hard?
Thm [Karger]: For undirected graphs, if sample each edge w.p. p~ 2
then w.h.p., each cut has (1+¢)p fraction edges sampled
Proof: cut counting: use fact that £n** many «-approximate mincuts
Not true for directed graphs!

Locality assumption: mincut is k-unbalanced: £k vertices on one side
Partial sparsification: preserve only k-unbalanced cuts (£ nk of them)

Balanced case: sample s,t at random and compute s-t mincut

s occurs w.p. 2k/n = repeat ~n/k times
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Directed Mincut

Algorithm: compute partial sparsifier H, then find directed mincut
9,5 In sparsifier. Output 9gS
Assumption: directed mincut is k-unbalanced

Thm: suppose sampled graph H satisfies (for some p)

- all k-unbalanced cuts have (1+€£)p fraction edges sampled
- all k-balanced cuts have size >> pA (A = mincut)

then mincut in H is (1+£)-mincut in G
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Directed Mlncut

Sample each edge with prob. p~ _—;3;—{‘-

- Each cut fails to be within 1+€ w.p. <<n’¥/t
- ~nk/ %-unbalanced cuts: all preserved w.h.p.

Force all -'g--balanced cuts to have size >> pA
by overlaying an expander: [9S|=~22(S| for ISI<n/2
- %-balanced cut increases by = 2\
- k-unbalanced cut increases by < 2s)\
(including mincut)
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Directed Mlncut
Sample each edge with prob. p~ £ _—'3'3—"-

Partial sparsifier with mincut p?\ Jﬁg—
Run Gabow’s algorithm on H: O(m?\H) time = O g)

Overall running time: ~km time unbalanced (approx),

N
~— max flows balanced (exact)

K
Arborescence packing + minimum l-respecting cut:

~k max flows unbalanced, exact
k=/n :~/n max flows



Recap: directed mincut

Thm: directed mincut in y/n max-flows

Directed sparsification is hard
Locality: partial sparsification of only unbalanced cuts
Balanced case: different strategy this time

= simple (1+¢)-approximate directed mincut
few extra steps for exact
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Deterministic Mincut

Global mincut: given a graph, find minimum # edges whose removal
disconnects the graph

- Karger 93, '96: O(n?) time, G(m) time randomized

- Kawarabayashi-Thorup ‘15: 6(m) deterministic for simple graphs

- L.-Panigrahi ‘20: deterministic Steiner mincut in ~max-flow time

- L.: deterministic mincut in m1*°(l) time

Preconditioning assumption: assume input is an expander
- Expander case: simple algorithm following [Karger ‘96]
- General case: expander decomposition (technical)
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Mincut by Sparsification + Tree Packing

Thm [Karger ‘96]: Suppose given a skeleton graph H s.t.
- H has O(m) edgeSKarger: randomized skeleton via graph sparsification

- The mincut of H is 242 P?\ (1+&) approximate cut sparsifier
- For the mincut 9S*in G, & suffices: sample (1+¢)p fraction of

the [0,8* £ (1+€)pA all cuts

Then, can compute exact mincut in G in mA, additional
deterministic time

This talk: deterministic skeleton for expander
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Skeleton Graph: Sparsification

Sample each edge in G with prob p := J%%%L". Let H = sampled edges

Thm [Karger] w.h.p., each cut 9S(5¢V) has (1+£)p fraction sampled

Proof: “smart union bound over all cuts”

Derandomization?

Even verification is hard! 2" cuts to check
Need to “union bound” more efficiently

Locality assumption: (1+¢€)-preserve only unbalanced cuts
mincut is unbalanced for expander
Balanced cuts: overlay expander (same as before)
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Conductance of a graph: $(6)= g.é,\\, IE\(IS,‘:S\)SN
0

o ¢ vol(5) ;vo‘\‘(vo\\s) :"\ <
Isa Q- ' ol
expander if 5(6)295 :u: ':% degrees in S

G
E(sV\s)=1
vol(S) =7
S
Why expanders? [KT'"’-]

Claim: in a ¢-expander, any o-approx mincut 9S (12sl Sdﬁ)
must have |S|4£%%




Expanders

Conductance of a graph: $(6)= g.é,\\, IE(S,‘V\)S”
. vol (S

G
E(sv\9)=1
ol(S)=7
| vol(§) £vol(W\S) A "
Gis a ¢-expander if $(6)29 ° "volume? o % 8
Wh | SUM o‘F ﬂ&“es lhs
v expanders? (KT 5]
Claim: in a ¢-ex
pander, any O -a '
iy pprox mincut 93 (2SI fd?\)
Proof: All degrees 2 A [A=mincut]
so vol(S)> ‘AlIS|
¢ -expander: 19S12 ¢ vol(S)2 ¢ AlSI
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Derandomization: Unbalanced Cuts

: o
First goal: ensure that sample (It€)p for all unbal. cuts 9S: ISlé-a'
(includes all &-approximate mincuts for a ¢-expander)

. ; 2
Lemma: suffices to ensure that: sample p fraction * i(-g) A of:

Proof: Let |ISI S% @ dtj@@#(uﬂ)
S

only n+m constraints!
95| = 2 deq =23 #(v)

VES uves Pessimistic estimators method: O(m) time

NE é(“/¢)1 terms, each with

£¢ (¢/o()°'ﬂ additive error

=» €A total additive error
(I+£) multiplicative error
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Karger: reduces to computing mincut sparsifier
Deterministic sparsifier is hard: 2" many cuts to preserve
Preconditioning assumption: input is expander

Locality assumption: mincut is unbalanced



Recap: Deterministic Mincut

Thm: deterministic mincut in m*°% time

Karger: reduces to computing mincut sparsifier
Deterministic sparsifier is hard: 2" many cuts to preserve
Preconditioning assumption: input is expander

Locality assumption: mincut is unbalanced

- Unbalanced cuts: only need to preserve deg(v) and #(u,v)
- Balanced cuts: overlay expander

= simple mincut sparsifier for expander

General graphs: expander decomposition
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Summary

Preconditioning Locality Misc.

> current fastest...

Steiner mincut

current fastest.. current fastest...

Sﬂf Fy ¢

minimum k-cut

det. exp. decomp.
det. Steiner

mincut

expandery/,
det. global

mincut
[

vertex mincut constant-approx.

planar sparsest cut

parallel SSSP

approx. GH tree

transshipment

directed mincut Feedback Vertex Set (FPT)

Future work: Gomory-Hu tree in polylog(n) max-flows?
Know: GH tree for expanders in polylog(n) max-flows (Min. Iso. Cuts)
Don’t know general case = expander case reduction!



