Preconditioning and Locality
In Algorithm Design

Jason LI
PhD Thesis

Problems Studied

Graph cut problems

- Mincut: edge/vertex, undirected/directed, global/terminal/all-pairs

Problems Studied

Graph cut problems

- Mincut: edge/vertex, undirected/directed, global/terminal/all-pairs

G GO &

cut of minimum size/weight
expander

{258
.’ expa nder
expander
expande

- Conductance and expander decomposition

expander

Problems Studied

Graph cut problems

- Mincut: edge/vertex, undirected/directed, global/terminal/all-pairs

DO o &

cut of minimum size/weight
expander

E/
xpande

-
Graph distance problems ‘

- Approximate shortest path, transshipment, L1 embedding (PRAM model)

- Conductance and expander decomposition

expander

Preconditioning and Locality

Preconditioning: worst case vs. average case

- Assume that the input is random
- expander (graph cut problems), low aspect ratio (distance)

Preconditioning and Locality

Preconditioning: worst case vs. average case

- Assume that the input is random

- expander (graph cut problems), low aspect ratio (distance)
- Reduce to random instances

- expander decomposition

\/fecursion

remaining graph

Preconditioning and Locality

Preconditioning: worst case vs. average case

- Assume that the input is random

- expander (graph cut problems), low aspect ratio (distance)
- Reduce to random instances

- expander decomposition

\/fecursion

remaining graph
- Popularized by Spielman and Teng [ST'04] on Laplacian system solvers

Preconditioning and Locality

- Local algorithms: explore a small neighborhood around v©

Preconditioning and Locality

- Local algorithms: explore a small neighborhood around v
- Run in time ~ smaller side of cut @

- e.g. PageRank Nibble for computing approximate conductance
- This talk: locality as a principle in algorithm design

Preconditioning and Locality

- Local algorithms: explore a small neighborhood around v
- Run in time ~ smaller side of cut @

- e.g. PageRank Nibble for computing approximate conductance
- This talk: locality as a principle in algorithm design

Locality: unbalanced vs. balanced

- Assume that the target solution is local to some vertex
- e.g. mincut cuts a small neighborhood around v

Preconditioning and Locality

- Local algorithms: explore a small neighborhood around v
- Run in time ~ smaller side of cut @

- e.g. PageRank Nibble for computing approximate conductance
- This talk: locality as a principle in algorithm design

Locality: unbalanced vs. balanced

- Assume that the target solution is local to some vertex
- e.g. mincut cuts a small neighborhood around v

- Reduce to unbalanced instances
- Straight reduction, or handle balanced case separately

the Case For Preconditioning and Locality

Preconditioning Locality

Powerful
- Resolves fundamental open problems

current fastest... current fastest...

det. exp. decomp.

Steiner mincut

det. Steiner
mincut

parallel SSSP vertex mincut

det. global approx. GH tree

mincut

transshipment

directed mincut

he Case For Preconditioning and Locality

Preconditioning Locality

current fastest...

Powerful
- Resolves fundamental open problems

current fastest...

det. exp. decomp.

Steiner mincut

det. Steiner
mincut

vertex mincut

parallel SSSP

(all pairs min ncut)

Versatile BN e

- Applicable to all types of graph problems

det. global
mincut

transshipment

directed mincut

he Case For Preconditioning and Locality

Preconditioning Locality

Powerful
- Resolves fundamental open problems

current fastest... current fastest...

det. exp. decomp.

Steiner mincut

det. Steiner

vertex mincut

parallel SSSP mincut
" all pairs mincut)
Versatile dor. Sinis] alBbrox M ree”

transshipment

- Applicable to all types of graph problems mincut

directed mincut‘/

Cutting-edge
- Mostly unexplored in the past => future potential
- Some results are remarkably simple

- All tools were around 40+ years ago, was only missing perspective

Problems Studied in Talk

Locality:
- Minimum Isolating Cuts problem

= simple, fastest Steiner mincut algorithm
= simple, fastest single-source mincut algorithm

Problems Studied in Talk

Locality:
- Minimum Isolating Cuts problem

= simple, fastest Steiner mincut algorithm
= simple, fastest single-source mincut algorithm

- Directed mincut: simple, fastest algorithm

Problems Studied in Talk

Locality:
- Minimum Isolating Cuts problem

= simple, fastest Steiner mincut algorithm
= simple, fastest single-source mincut algorithm

- Directed mincut: simple, fastest algorithm

Preconditioning:

- Deterministic mincut: first almost-linear time algorithm
- simple on expanders

Part I: Locality

1. Steiner mincut
2. Directed mincut

Steiner Mincut

Given a graph and a set R of terminals, find the mincut
that separates at least two terminals

Steiner Mincut

Given a graph and a set R of terminals, find the mincut
that separates at least two terminals

- Generalizes s-t mincut: R = {s,t}

- Generalizes global mincut: R =V

Steiner Mincut

Given a graph and a set R of terminals, find the mincut
that separates at least two terminals
- Generalizes s-t mincut: R = {s,t}
- Generalizes global mincut: R =V
- Useful subroutine for GH tree,
6(m+nc2) algorithm [Bhalgat-Cole-Hariharan-Panigrahi ‘07]

Steiner Mincut

Given a graph and a set R of terminals, find the mincut
that separates at least two terminals ?
- Generalizes s-t mincut: R = {s,t} ’

- Generalizes global mincut: R =V
- Useful subroutine for GH tree,

6(m+nc2) algorithm [Bhalgat-Cole-Hariharan-Panigrahi ‘07]

Leap of faith: assume that Steiner mincut is unbalanced
- 1 terminal on one side?

Steiner Mincut

Given a graph and a set R of terminals, find the mincut
that separates at least two terminals ?
- Generalizes s-t mincut: R = {s,t} ’

- Generalizes global mincut: R =V
- Useful subroutine for GH tree,

6(m+nc2) algorithm [Bhalgat-Cole-Hariharan-Panigrahi ‘07]

Leap of faith: assume that Steiner mincut is unbalanced
- 1 terminal on one side?

Can be reduced to this case! (random sampling)

Steiner Mincut

Theorem: unbalanced Steiner mincut can be solved in
polylog(n) max-flow calls

Steiner Mincut

Theorem: unbalanced Steiner mincut can be solved in

polylog(n) max-flow calls

- Minimum Isolating Cuts: new problem capturing the
locality assumption

- Simple algorithm in O(log n) max-flows

Steiner Mincut

Theorem: unbalanced Steiner mincut can be solved in

polylog(n) max-flow calls

- Minimum Isolating Cuts: new problem capturing the
locality assumption

- Simple algorithm in O(log n) max-flows

Theorem: (general) Steiner mincut can be solved in
polylog(n) max-flow calls
- Simple random sampling: reduce to unbalanced!

Given a graph and a set R of terminals,
find, for each terminal v, the mincut S, that
Isolates that terminal

Given a graph and a set R of terminals,
find, for each terminal v, the mincut S, that
Isolates that terminal

Trivial: IR| s-t mincuts
[L.-Panigrahi '20] O(log IRI) s-t mincuts suffice!

Given a graph and a set R of terminals,
find, for each terminal v, the mincut S, that
Isolates that terminal

Trivial: IR| s-t mincuts
[L.-Panigrahi '20] O(log IRI) s-t mincuts suffice!

— unbalanced Steiner mincut in O(log IRl) max-flows

Given a graph and a set R of terminals,
find, for each terminal v, the mincut S, that
Isolates that terminal

Trivial: IR|l s-t mincuts
[L.-Panigrahi '20] O(log IRI) s-t mincuts suffice!

— unbalanced Steiner mincut in O(log IRl) max-flows

Reduce general Steiner mincut to unbalanced: ¢

Given a graph and a set R of terminals,
find, for each terminal v, the mincut S, that
Isolates that terminal

Trivial: IRIl s-t mincuts
[L.-Panigrahi '20] O(log IRI) s-t mincuts suffice!

— unbalanced Steiner mincut in O(log IRl) max-flows

Reduce general Steiner mincut to unbalanced: ¢

Given a graph and a set R of terminals,
find, for each terminal v, the mincut S, that
Isolates that terminal

Trivial: IR| s-t mincuts
[L.-Panigrahi '20] O(log IRI) s-t mincuts suffice!

— unbalanced Steiner mincut in O(log IRl) max-flows

Reduce general Steiner mincut to unbalanced: ¢

' |
If sample at rate ~ =, then
constant prob. success

Given a graph and a set R of terminals,
find, for each terminal v, the mincut S, that

Isolates that terminal

Trivial: IR| s-t mincuts
[L.-Panigrahi ‘20] O(log IRI) s-t mincuts suffice!

— unbalanced Steiner mincut in O(log IRl) max-flows

Reduce general Steiner mincut to unbalanced: ¢
Sample at rate 1/2, 1/4, 1/8, ...

' I
If sample at rate ~ =, then
constant prob. success

Minimum Isolating Cuts

ldea: compute an “upper bound” for each isolating cut
V?- Sv VVGR

o (, are disjoint

Minimum Isolating Cuts

ldea: compute an “upper bound” for each isolating cut
+ 2S5, YvekR

o (, are disjoint

S, is the s-t mincut

For each veR, run max-flow on graph with V\S, contracted

Minimum Isolating Cuts

ldea: compute an “upper bound” for each isolating cut
+ 2S5, YvekR

o (, are disjoint

S, is the s-t mincut

For each veR, run max-flow on graph with V\S, contracted

Each edge in at most 2 such graphs => total size < 2m
=> max-flow time on O(n) vertices, O(m) edges

Minimum Isolating Cuts

- Compute log IRl bipartitions ofR, (X, Y|

- Want: each pair s,t in R is separated
In at least one of them

Minimum Isolating Cuts

- Compute log IRI bipartitions ofR, (X, Y|

- Want: each pair s,t in R is separated
In at least one of them

Minimum Isolating Cuts

- Compute log IR bipartitions ofR, (X, Y}) X2

- Want: each pair s,t in R is separated
In at least one of them

Y,
/0 <

2

Minimum Isolating Cuts

- Compute log IRI bipartitions ofR, (X, Y|

- Want: each pair s,t in R is separated Xl
In at least one of them

- For each k, compute (Xk, Yk)-min-cut

Minimum Isolating Cuts

- Compute log IRI bipartitions ofR, (X, Y|

- Want: each pair s,t in R is separated
In at least one of them

- For each k, compute (Xk, Yk)-min-cut

Minimum Isolating Cuts

- Compute log IRI bipartitions ofR, (X, Y|
- Want: each pair s,t in R is separated

In at least one of them f ; ’
- For each k, compute (Xk, Yk)-m! _
Claim: Union of min-cut separates aII of R R

Y,

Q

N

Minimum Isolating Cuts

- Compute log IRI bipartitions ofR, (X, Y|

- Want: each pair s,t in R is separated _
| /N
In at least one of them 7\

o

Q

- For each k, compute (Xk, Yk)-min-cut
Claim: Union of min-cuts separates all of R

Upper Bound Lemma:
In G\(union of mincuts), v's connected
component contains (v, R\v)-mincut

Minimum Isolating Cuts

- Compute log IRI bipartitions ofR, (X, Y|
- Want: each pair s,t in R is separated
In at least one of them
- For each k, compute (Xk, Yk)-min-cut
Claim: Union of min-cuts separates all of R
Upper Bound Lemma:

In G\(union of mincuts), v's connected
component contains (v, R\v)-mincut

Proof: submodularity/uncrossing

PSS

Minimum Isolating Cuts

- Compute log IRl bipartitions ofR, (X, Y|/ ’ 'V
= \

- Want: each pair s,t in R is separated =
In at least one of them

7\ /
’ < - N

- For each k, compute (X kr Yk)-min-cut
Claim: Union of min-cuts separates all of R
Upper Bound Lemma:

In G\(union of mincuts), v's connected
component contains (v, R\v)-mincut

Proof: submodularlty/uncrossmg

[+ >2Y5 + § '
b’i < b‘J‘\ also (X4,Y1)-mincut

Minimum Isolating Cuts

- Compute log IRl bipartitions ofR, (X, Y|
- Want: each pair s,t in R is separated
In at least one of them
- For each k, compute (Xk, Yk)-min-cut
Claim: Union of min-cuts separates all of R

Upper Bound Lemma:
In G\(union of mincuts), v's connected
component contains (v, R\v)-mincut

Proof: submodularity/uncrossing

S

Recap: Steiner mincut
Thm: Steiner mincut in polylog(n) max-flows

Assumption inspired by locality: Steiner mincut is
unbalanced (1 terminal on one side)
- Reduces to Minimum Isolating Cuts

Simple algorithm for Min. Iso. Cuts

Simple reduction from general Steiner mincut to
unbalanced: random sampling

Recap: Steiner mincut
Thm: Steiner mincut in polylog(n) max-flows

Assumption inspired by locality: Steiner mincut is
unbalanced (1 terminal on one side)
- Reduces to Minimum Isolating Cuts

Simple algorithm for Min. Iso. Cuts

Simple reduction from general Steiner mincut to
unbalanced: random sampling

Minimum Isolating Cuts: Applications

[L.-Panigrahi ‘21]: All-pairs mincut and Gomory-Hu tree:
(1+¢)-approximation in polylog(n) exact max-flows

[L.-Nanongkai-Panigrahi-Saranurak-Yingchareonthawornchai ‘21]
vertex connectivity in polylog(n) max-flows

[Chekuri-Quanrud, Mukhopadhyay-Nanongkai ‘21]
Symmetric bisubmodular function minimization,
hypergraph connectivity, element connectivity

Directed Mincut
Directed mincut: partition (S, V\S) s.t. no directed edge from S to V\S

€D

Directed Mincut
Directed mincut: partition (S, V\S) s.t. no directed edge from S to V\S

Much harder than undirected: @
- Karger's randomized contraction doesn’t work S

- Sparsifiers for directed graphs are hard/impossible

Directed Mincut
Directed mincut: partition (S, V\S) s.t. no directed edge from S to V\S

Much harder than undirected: @
- Karger's randomized contraction doesn’t work S
- Sparsifiers for directed graphs are hard/impossible

Previous best: S(mn) [Hao-Orlin"94]

[Cen-L.-Nanongkai-Panigrahi-Saranurak] yn max-flows =O(mJn+n?)
This talk: (1+¢&)-approximation

Directed Mincut

Why are directed sparsifiers hard?

Directed Mincut

Why are directed sparsifiers hard? e

Thm [Karger]: For undirected graphs, if sample each edge w.p. p~ Ef;\ :
then w.h.p., each cut has (1+¢<)p fraction edges sampled

Proof: cut counting: use fact that £n** many «-approximate mincuts

Directed Mincut

Why are directed sparsifiers hard?
Thm [Karger]: For undirected graphs, if sample each edge w.p. p~ 2
then w.h.p., each cut has (1+¢)p fraction edges sampled
Proof: cut counting: use fact that £n** many «-approximate mincuts
Not true for directed graphs!

Directed Mincut

Why are directed sparsifiers hard?
Thm [Karger]: For undirected graphs, iIf sample each edge w.p. p~ 2
then w.h.p., each cut has (1+¢)p fraction edges sampled
Proof: cut counting: use fact that £n** many «-approximate mincuts
Not true for directed graphs!

Locality assumption: mincut is k-unbalanced: £k vertices on one side
Partial sparsification: preserve only k-unbalanced cuts (£ nk of them)

Directed Mincut

Why are directed sparsifiers hard?
Thm [Karger]: For undirected graphs, if sample each edge w.p. p~ 2
then w.h.p., each cut has (1+¢)p fraction edges sampled
Proof: cut counting: use fact that £n** many «-approximate mincuts
Not true for directed graphs!

Locality assumption: mincut is k-unbalanced: £k vertices on one side
Partial sparsification: preserve only k-unbalanced cuts (£ nk of them)

Balanced case: sample s,t at random and compute s-t mincut

s occurs w.p. 2k/n = repeat ~n/k times

Directed Mincut

Algorithm: compute partial sparsifier H, then find directed mincut
9,5 in sparsifier. Output 9gS
Assumption: directed mincut is k-unbalanced

Directed Mincut

Algorithm: compute partial sparsifier H, then find directed mincut
9,5 In sparsifier. Output 9gS
Assumption: directed mincut is k-unbalanced

Thm: suppose sampled graph H satisfies (for some p)

- all k-unbalanced cuts have (1+€£)p fraction edges sampled
- all k-balanced cuts have size >> pA (A = mincut)

then mincut in H is (1+£)-mincut in G

Di
Ire
cted Mi
Inc!
ut

Sa
m
ple
ea
ch
e
dge wit
h
pro
b.
flnt X
E

Directed Mlncut

Sample each edge with prob. p~ _—;3;—:‘-

- Each cut fails to be within 1+€ w.p. <<n’¥/t
- ~nk/ %-unbalanced cuts: all preserved w.h.p.

Directed Mlncut

Sample each edge with prob. p~ _—;;7;—{‘-

- Each cut fails to be within 1+€ w.p. <<n’¥/t
- ~nk/e %-unbalanced cuts: all preserved w.h.p.

Force all -'g--balanced cuts to have size >> pA
by overlaying an expander: [2S|=~22(S| for ISI<n/2

Directed Mlncut

Sample each edge with prob. p~ _—;3;—{‘-

- Each cut fails to be within 1+€ w.p. <<n’¥/t
- ~nk/ %-unbalanced cuts: all preserved w.h.p.

Force all -'g--balanced cuts to have size >> pA
by overlaying an expander: [9S|=~22(S| for ISI<n/2
- %-balanced cut increases by = 2\
- k-unbalanced cut increases by < 2s)\
(including mincut)

Di
Ire
cted Mi
Inc!
ut

Sa
m
ple
ea
ch
e
dge wit
h
pro
b.
flnt X
E

Directed Mlncut
Sample each edge with prob. p~ £ '—'3'3—"-

Partial sparsifier with mincut p?\ Jﬁg—
Run Gabow'’s algorithm on H: O(m?\H) time = 0 '_r)

Directed Mlncut
Sample each edge with prob. p~ £ _—'3'3—"-

Partial sparsifier with mincut p?\ Jﬁg—
Run Gabow'’s algorithm on H: O(m?\H) time = 0 g)

Overall running time: ~km time unbalanced (approx),

n

~ 1 Mmax flows balanced (exact)

Directed Mlncut
Sample each edge with prob. p~ £ _—'3'3—"-

Partial sparsifier with mincut p?\ Jﬁg—
Run Gabow’s algorithm on H: O(m?\H) time = O g)

Overall running time: ~km time unbalanced (approx),

N
~— max flows balanced (exact)

K
Arborescence packing + minimum l-respecting cut:

~k max flows unbalanced, exact
k=/n :~/n max flows

Recap: directed mincut

Thm: directed mincut in y/n max-flows

Directed sparsification is hard
Locality: partial sparsification of only unbalanced cuts
Balanced case: different strategy this time

= simple (1+¢)-approximate directed mincut
few extra steps for exact

Part |l: Preconditioning

1. Deterministic mincut

Deterministic Mincut

Global mincut: given a graph, find minimum # edges whose removal
disconnects the graph

Deterministic Mincut

Global mincut: given a graph, find minimum # edges whose removal
disconnects the graph

- Karger 93, '96: O(n?) time, 6(m) time randomized

- Kawarabayashi-Thorup ‘15: 6(m) deterministic for simple graphs

- L.-Panigrahi ‘20: deterministic Steiner mincut in ~max-flow time

- L.: deterministic mincut in m1*°ll) time

Deterministic Mincut

Global mincut: given a graph, find minimum # edges whose removal
disconnects the graph

- Karger 93, '96: O(n?) time, G(m) time randomized

- Kawarabayashi-Thorup ‘15: 6(m) deterministic for simple graphs

- L.-Panigrahi ‘20: deterministic Steiner mincut in ~max-flow time

- L.: deterministic mincut in m1*°(l) time

Preconditioning assumption: assume input is an expander
- Expander case: simple algorithm following [Karger ‘96]
- General case: expander decomposition (technical)

Mincut by Sparsification + Tree Packing

Thm [Karger ‘96]: Suppose given a skeleton graph H s.t.
- H has O(m) edges
- The mincut of H is 2= pA
- For the mincut 9¢S*in G,
the [0,8* £ (1+€)pA

Then, can compute exact mincut in G in mA, additional
deterministic time

Mincut by Sparsification + Tree Packing

Thm [Karger ‘96]: Suppose given a skeleton graph H s.t.
- H has O(m) edgeSKarger: randomized skeleton via graph sparsification
- The mincut of H is 2= pA
- For the mincut 9¢S*in G,
the [0,8* £ (1+€)pA

Then, can compute exact mincut in G in mA, additional
deterministic time

Mincut by Sparsification + Tree Packing

Thm [Karger ‘96]: Suppose given a skeleton graph H s.t.
- H has O(m) edgeSKarger: randomized skeleton via graph sparsification

- The mincut of H is 242 P?\ (1+&) approximate cut sparsifier
- For the mincut 9S*in G, & suffices: sample (1+¢)p fraction of

the [2,8* £ (1+€)pA all cuts

Then, can compute exact mincut in G in mA, additional
deterministic time

Mincut by Sparsification + Tree Packing

Thm [Karger ‘96]: Suppose given a skeleton graph H s.t.
- H has O(m) edgeSKarger: randomized skeleton via graph sparsification

- The mincut of H is 242 P?\ (1+&) approximate cut sparsifier
- For the mincut 9S*in G, & suffices: sample (1+¢)p fraction of

the [0,8* £ (1+€)pA all cuts

Then, can compute exact mincut in G in mA, additional
deterministic time

This talk: deterministic skeleton for expander

Skeleton Graph: Sparsification

Sample each edge in G with prob p := 1—";—;3. Let H = sampled edges

Skeleton Graph: Sparsification

Sample each edge in G with prob p := 1—02‘—:_%. Let H = sampled edges

Thm [Karger] w.h.p., each cut 9S(5<V) has (1+¢)p fraction sampled

Skeleton Graph: Sparsification

Sample each edge in G with prob p := %‘—i%. Let H = sampled edges

Thm [Karger] w.h.p., each cut 9S(5<V) has (1+£)p fraction sampled

Proof: “smart union bound over all cuts”

Skeleton Graph: Sparsification

Sample each edge in G with prob p := %‘—:_%. Let H = sampled edges

Thm [Karger] w.h.p., each cut 9S(5<V) has (1£)p fraction sampled

Proof: “smart union bound over all cuts”

Derandomization?

Skeleton Graph: Sparsification

Sample each edge in G with prob p := —iz—;:ﬂ Let H = sampled edges

Thm [Karger] w.h.p., each cut 9S(5¢V) has (1¢)p fraction sampled

Proof: “smart union bound over all cuts”

Derandomization?

Even verification is hard! 2" cuts to check
Need to “union bound” more efficiently

Skeleton Graph: Sparsification

Sample each edge in G with prob p := J%%%L". Let H = sampled edges

Thm [Karger] w.h.p., each cut 9S(5¢V) has (1+£)p fraction sampled

Proof: “smart union bound over all cuts”

Derandomization?

Even verification is hard! 2" cuts to check
Need to “union bound” more efficiently

Locality assumption: (1+¢€)-preserve only unbalanced cuts
mincut is unbalanced for expander
Balanced cuts: overlay expander (same as before)

Expanders

Conductance of a graph: $(6)= g.é,\\, IE\(,S:EIS\)SN
= 0

o ¢ vol(5) .é.vo‘\‘(vo\\s) \)“\ (s
iIsa Q- ' b
expander if 5(6)295 :u: '2% degrees in S

G
E(SV\s)=1
@ vol(S) =7
S

Expanders

Conductance of a graph: $(6)= g.é,\\, IE\(IS,‘:S\)SN
0

o ¢ vol(5) ;vo‘\‘(vo\\s) :"\ <
Isa Q- ' ol
expander if 5(6)295 :u: ':% degrees in S

G
E(sV\s)=1
vol(S) =7
S
Why expanders? [KT'"’-]

Claim: in a ¢-expander, any o-approx mincut 9S (12sl Sdﬁ)
must have |S|4£%%

Expanders

Conductance of a graph: $(6)= g.é,\\, IE(S,‘V\)S”
. vol (S

G
E(sv\9)=1
ol(S)=7
| vol(§) £vol(W\S) A "
Gis a ¢-expander if $(6)29 ° "volume? o % 8
Wh | SUM o‘F ﬂ&“es lhs
v expanders? (KT 5]
Claim: in a ¢-ex
pander, any O -a '
iy pprox mincut 93 (2SI fd?\)
Proof: All degrees 2 A [A=mincut]
so vol(S)> ‘AlIS|
¢ -expander: 19S12 ¢ vol(S)2 ¢ AlSI

Derandomization: Unbalanced Cuts

: of
First goal: ensure that sample (I£€)p for all unbal. cuts 9S: ISléj’;'
(includes all %-approximate mincuts for a ¢-expander)

Derandomization: Unbalanced Cuts

: of
First goal: ensure that sample (I£€)p for all unbal. cuts 9S: ISle‘
(includes all &-approximate mincuts for a ¢-expander)

. . 2
Lemma: suffices to ensure that; sample p fraction £ i(-g) ’/\ of:

o‘tj(v) #(u,v)

only n+m constraints!

Derandomization: Unbalanced Cuts

: of
First goal: ensure that sample (I£€)p for all unbal. cuts 9S: |S|é'$'
(includes all &-approximate mincuts for a ¢-expander)

; : 2
Lemma: suffices to ensure that; sample p fraction £ i(-g) A of:

Proof: Let ISI S% @ d:gm#(u,o
S

only n+m constraints!
95| = 2 deq =25 #(v)

VES uVve S

Derandomization: Unbalanced Cuts

: o
First goal: ensure that sample (It€)p for all unbal. cuts 9S: ISlé-a'
(includes all &-approximate mincuts for a ¢-expander)

. : 2
Lemma: suffices to ensure that; sample p fraction £ i(-g) A of:

Proof: Let |ISI S% @) dtj@@#(u,v)
S

only n+m constraints!
95| = 2 deq =25 #(v)

VES WVES
NE é(“/¢)1 terms, each with
£¢ (¢/o()7'ﬂ additive error
=> €A total additive error
(I+£) multiplicative error

Derandomization: Unbalanced Cuts

: o
First goal: ensure that sample (It€)p for all unbal. cuts 9S: ISlé-a'
(includes all &-approximate mincuts for a ¢-expander)

. ; 2
Lemma: suffices to ensure that: sample p fraction * i(-g) A of:

Proof: Let |ISI S% @ dtj@@#(uﬂ)
S

only n+m constraints!
95| = 2 deq =23 #(v)

VES uves Pessimistic estimators method: O(m) time

NE é(“/¢)1 terms, each with

£¢ (¢/o()°'ﬂ additive error

=» €A total additive error
(I+£) multiplicative error

Recap: Deterministic Mincut

Thm: deterministic mincut in m*°% time

Karger: reduces to computing mincut sparsifier
Deterministic sparsifier is hard: 2" many cuts to preserve
Preconditioning assumption: input is expander

Locality assumption: mincut is unbalanced

Recap: Deterministic Mincut

Thm: deterministic mincut in m*°% time

Karger: reduces to computing mincut sparsifier
Deterministic sparsifier is hard: 2" many cuts to preserve
Preconditioning assumption: input is expander

Locality assumption: mincut is unbalanced

- Unbalanced cuts: only need to preserve deg(v) and #(u,v)
- Balanced cuts: overlay expander

= simple mincut sparsifier for expander

General graphs: expander decomposition

Summary

Preconditioning Locality

current fastest...

current fastest...

det. exp. decomp.

Steiner mincut

det. Steiner
mincut

xpander,/|
det. global’/ @PProx. GH tree
4

mincut

parallel SSSP vertex mincut

transshipment

directed mincut

Summary

Preconditioning Locality Misc.

e current fastest...

i Sﬂfﬁt
Steiner mincut

current fastest...

det. exp. decomp. minimum k-cut

det. Steiner
mincut

expandery/,
det. global

mincut

vertex mincut constant-approx.

planar sparsest cut

parallel SSSP

approx. GH tree

transshipment

directed mincut Feedback Vertex Set (FPT)

Summary

Preconditioning Locality Misc.

> current fastest...

Steiner mincut

current fastest.. current fastest...

Sﬂf Fy ¢

minimum k-cut

det. exp. decomp.
det. Steiner

mincut

expandery/,
det. global

mincut
[

vertex mincut constant-approx.

planar sparsest cut

parallel SSSP

approx. GH tree

transshipment

directed mincut Feedback Vertex Set (FPT)

Future work: Gomory-Hu tree in polylog(n) max-flows?
Know: GH tree for expanders in polylog(n) max-flows (Min. Iso. Cuts)
Don’t know general case = expander case reduction!

