A Local Search-Based Approach for Set Covering

Jason Li (Simons Institute) Joint with Anupam Gupta (CMU), Euiwoong Lee (UMich)

> SODA 2023 January 23, 2023

> > ◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

 Set Cover: given a family of sets S ⊆ U with weights w(S), find a minimum weight collection of sets that cover U

• Parameter k: all sets S have size $\leq k$ (here, k = 3)

- Parameter k: all sets S have size $\leq k$ (here, k = 3)
- Folklore greedy algorithm: H_k -approximation where $H_k = 1 + \frac{1}{2} + \dots + \frac{1}{k} \approx \ln k + O(1)$

- Parameter k: all sets S have size $\leq k$ (here, k = 3)
- Folklore greedy algorithm: H_k -approximation where $H_k = 1 + \frac{1}{2} + \dots + \frac{1}{k} \approx \ln k + O(1)$
- Hard to approximate within ln k O(ln ln k) [Feige'98,Trevisan'01]

- Parameter k: all sets S have size $\leq k$ (here, k = 3)
- Folklore greedy algorithm: H_k -approximation where $H_k = 1 + \frac{1}{2} + \dots + \frac{1}{k} \approx \ln k + O(1)$
- Hard to approximate within ln k O(ln ln k) [Feige'98,Trevisan'01]
- This talk: local search algorithm for set cover

Exact Set Cover

◆□▶ ◆□▶ ★ □▶ ★ □ ▶ → □ ● の < @

Exact Set Cover

▲□▶▲□▶▲□▶▲□▶ □ クタペ

Exact Set Cover: given a family of sets S ⊆ U with weights w(S), find a minimum weight collection of sets that partition U

• Transformation: for each original set *S*, add all subsets of *S*, each of weight *w*(*S*)

Local search for set cover:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Local search for set cover:
 - Maintain a feasible solution at all times

◆□▶ ◆□▶ ★ □▶ ★ □ ▶ → □ ● の < @

- Local search for set cover (of width *w*):
 - Maintain a feasible solution at all times
 - Try all ways to add ≤ *w* disjoint sets *S*₁,..., *S_w* and prune existing sets to ensure exact cover.

- Local search for set cover (of width *w*):
 - Maintain a feasible solution at all times
 - Try all ways to add ≤ w disjoint sets S₁,..., S_w and prune existing sets to ensure exact cover.

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Local search for set cover (of width *w*):
 - Maintain a feasible solution at all times
 - Try all ways to add ≤ w disjoint sets S₁,..., S_w and prune existing sets to ensure exact cover.

▲□▶▲□▶▲□▶▲□▶ □ クタペ

- Local search for set cover (of width *w*):
 - Maintain a feasible solution at all times
 - Try all ways to add ≤ w disjoint sets S₁,..., S_w and prune existing sets to ensure exact cover.

- Local search for set cover (of width *w*):
 - Maintain a feasible solution at all times
 - Try all ways to add ≤ w disjoint sets S₁,..., S_w and prune existing sets to ensure exact cover.

If feasible solution of lower cost, move to new solution.

• Repeat until no further improvement is possible.

- Local search for set cover (of width *w*):
 - Maintain a feasible solution at all times
 - Try all ways to add ≤ w disjoint sets S₁,..., S_w and prune existing sets to ensure exact cover.

- Repeat until no further improvement is possible.
- Does not achieve any constant approximation!

- Local search for set cover (of width *w*):
 - Maintain a feasible solution at all times
 - Try all ways to add ≤ w disjoint sets S₁,..., S_w and prune existing sets to ensure exact cover.

- Repeat until no further improvement is possible.
- Does not achieve any constant approximation!

- Local search for set cover (of width *w*):
 - Maintain a feasible solution at all times
 - Try all ways to add ≤ w disjoint sets S₁,..., S_w and prune existing sets to ensure exact cover.

- Repeat until no further improvement is possible.
- Does not achieve any constant approximation!

- Local search for set cover (of width *w*):
 - Maintain a feasible solution at all times
 - Try all ways to add ≤ w disjoint sets S₁,..., S_w and prune existing sets to ensure exact cover.

- Repeat until no further improvement is possible.
- Does not achieve any constant approximation!

- Local search for set cover (of width *w*):
 - Maintain a feasible solution at all times
 - Try all ways to add ≤ w disjoint sets S₁,..., S_w and prune existing sets to ensure exact cover.

- Repeat until no further improvement is possible.
- Does not achieve any constant approximation!

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣�(♡

• What should local search do?

◆□▶ ◆□▶ ★ □▶ ★ □ ▶ → □ ● の < @

What should local search do?

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

• What should local search do?

• What should local search do?

 $\epsilon \ll 1/n, \, w \ll n$

◆□▶ ◆□▶ ★ □▶ ★ □ ▶ → □ ● の < @

• What should local search do?

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

What should local search do?

Define a custom potential function Φ(C) to measure progress: Φ(C) = ∑_{S∈C} w(S) · f(|S|)

What should local search do?

- Define a custom potential function Φ(C) to measure progress: Φ(C) = Σ_{S∈C} w(S) · f(|S|)
 - Approximates true objective: w(C) ≤ Φ(C) ≤ α w(C) for approximation α, so enforce 1 ≤ f(s) ≤ α

What should local search do?

- Define a custom potential function $\Phi(C)$ to measure progress: $\Phi(C) = \sum_{S \in C} w(S) \cdot f(|S|)$
 - Approximates true objective: w(C) ≤ Φ(C) ≤ α w(C) for approximation α, so enforce 1 ≤ f(s) ≤ α

What should local search do?

- Define a custom potential function $\Phi(C)$ to measure progress: $\Phi(C) = \sum_{S \in C} w(S) \cdot f(|S|)$
 - Approximates true objective: w(C) ≤ Φ(C) ≤ α w(C) for approximation α, so enforce 1 ≤ f(s) ≤ α

• f(s) should be increasing on s

What should local search do?

- Define a custom potential function $\Phi(C)$ to measure progress: $\Phi(C) = \sum_{S \in C} w(S) \cdot f(|S|)$
 - Approximates true objective: w(C) ≤ Φ(C) ≤ α w(C) for approximation α, so enforce 1 ≤ f(s) ≤ α

- f(s) should be increasing on s
 - $\alpha = \ln k$: try $f(s) = H_s = 1 + \frac{1}{2} + \dots + \frac{1}{s}$?

What should local search do?

- Define a custom potential function Φ(C) to measure progress: Φ(C) = Σ_{S∈C} w(S) · f(|S|)
 - Approximates true objective: w(C) ≤ Φ(C) ≤ α w(C) for approximation α, so enforce 1 ≤ f(s) ≤ α

- f(s) should be increasing on s
 - $\alpha = \ln k$: try $f(s) = H_s = 1 + \frac{1}{2} + \dots + \frac{1}{s}$?
 - Inspired by [Traub-Zenklusen'21] on Steiner tree by non-oblivious local search

• What should local search do?

- Define a custom potential function $\Phi(C)$ to measure progress: $\Phi(C) = \sum_{S \in C} w(S) \cdot f(|S|)$
 - Approximates true objective: w(C) ≤ Φ(C) ≤ α w(C) for approximation α, so enforce 1 ≤ f(s) ≤ α

- f(s) should be increasing on s
 - $\alpha = \ln k$: try $f(s) = H_s = 1 + \frac{1}{2} + \dots + \frac{1}{s}$?
 - Inspired by [Traub-Zenklusen'21] on Steiner tree by non-oblivious local search

Φ is called the Rosenthal potential

◆□▶ ◆□▶ ★ □▶ ★ □ ▶ → □ ● の < @

• Theorem: width-1 local search with the Rosenthal potential is an H_k -approximation

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

- Theorem: width-1 local search with the Rosenthal potential is an H_k -approximation
- Proof: Let C^* be the optimal solution.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

- Theorem: width-1 local search with the Rosenthal potential is an H_k -approximation
- Proof: Let \mathcal{C}^* be the optimal solution.

• Recall that
$$\Phi(\mathcal{C}) = \sum_{S \in \mathcal{C}} w(S) \cdot H_{|S|}$$
.

- Theorem: width-1 local search with the Rosenthal potential is an *H_k*-approximation
- Proof: Let \mathcal{C}^* be the optimal solution.
 - Recall that $\Phi(\mathcal{C}) = \sum_{S \in \mathcal{C}} w(S) \cdot H_{|S|}$.
 - Adding in any $S^* \in \mathcal{C}^*$ and pruning does not improve local search:

$$\underbrace{\textit{W}(\textit{S}^*)\textit{H}_{|\textit{S}^*|}}_{\text{increase in } \Phi \text{ from } \textit{S}^*} \geq \sum_{\textit{S} \in \textit{C}} \underbrace{\textit{W}(\textit{S})\left(\textit{H}_{|\textit{S}|} - \textit{H}_{|\textit{S} \setminus \textit{S}^*|}\right)}_{\text{savings from pruning } \textit{S} \to \textit{S} \setminus \textit{S}^*}$$

- Theorem: width-1 local search with the Rosenthal potential is an *H_k*-approximation
- Proof: Let C^* be the optimal solution.
 - Recall that $\Phi(\mathcal{C}) = \sum_{S \in \mathcal{C}} w(S) \cdot H_{|S|}$.
 - Adding in any $S^* \in \mathcal{C}^*$ and pruning does not improve local search:

$$\underbrace{w(S^*)H_{|S^*|}}_{\text{increase in } \Phi \text{ from } S^*} \geq \sum_{S \in \mathcal{C}} \underbrace{w(S)\left(H_{|S|} - H_{|S \setminus S^*|}\right)}_{\text{savings from pruning } S \to S \setminus S^*}.$$

•
$$H_{|S|} - H_{|S \setminus S^*|} = \frac{1}{|S \setminus S^*| + 1} + \frac{1}{|S \setminus S^*| + 2} + \dots + \frac{1}{|S|} \ge |S \cap S^*| \cdot \frac{1}{|S|}$$

- Theorem: width-1 local search with the Rosenthal potential is an *H_k*-approximation
- Proof: Let C^* be the optimal solution.
 - Recall that $\Phi(\mathcal{C}) = \sum_{S \in \mathcal{C}} w(S) \cdot H_{|S|}$.
 - Adding in any $S^* \in \mathcal{C}^*$ and pruning does not improve local search:

$$\underbrace{w(S^*)H_{|S^*|}}_{\text{increase in }\Phi \text{ from }S^*} \geq \sum_{S \in \mathcal{C}} \underbrace{w(S)\left(H_{|S|} - H_{|S \setminus S^*|}\right)}_{\text{savings from pruning }S \to S \setminus S^*}.$$

•
$$H_{|S|} - H_{|S \setminus S^*|} = \frac{1}{|S \setminus S^*| + 1} + \frac{1}{|S \setminus S^*| + 2} + \dots + \frac{1}{|S|} \ge |S \cap S^*| \cdot \frac{1}{|S|}$$

 $\implies w(S^*)H_{|S^*|} \ge \sum_{S \in \mathcal{C}} w(S)|S \cap S^*| \cdot \frac{1}{|S|}$

>

- Theorem: width-1 local search with the Rosenthal potential is an *H_k*-approximation
- Proof: Let \mathcal{C}^* be the optimal solution.

.....

- Recall that $\Phi(\mathcal{C}) = \sum_{S \in \mathcal{C}} w(S) \cdot H_{|S|}$.
- Adding in any $S^* \in \mathcal{C}^*$ and pruning does not improve local search:

$$\underbrace{w(S^*)H_{|S^*|}}_{\text{increase in } \Phi \text{ from } S^*} \geq \sum_{S \in \mathcal{C}} \underbrace{w(S)(H_{|S|} - H_{|S \setminus S^*|})}_{\text{savings from pruning } S \to S \setminus S^*}$$
• $H_{|S|} - H_{|S \setminus S^*|} = \frac{1}{|S \setminus S^*| + 1} + \frac{1}{|S \setminus S^*| + 2} + \dots + \frac{1}{|S|} \geq |S \cap S^*| \cdot \frac{1}{|S|}$

$$\implies w(S^*)H_{|S^*|} \geq \sum_{S \in \mathcal{C}} w(S)|S \cap S^*| \cdot \frac{1}{|S|}$$

$$\sum_{S^* \in \mathcal{C}^*} w(S^*)H_{|S^*|} \geq \sum_{S^* \in \mathcal{C}^*} \sum_{S \in \mathcal{C}} w(S)|S \cap S^*| \cdot \frac{1}{|S|}$$

$$= \sum_{S \in \mathcal{C}} w(S) \underbrace{\sum_{S^* \in \mathcal{C}^*} |S \cap S^*| \cdot \frac{1}{|S|}}_{=1}$$

>

- Theorem: width-1 local search with the Rosenthal potential is an *H_k*-approximation
- Proof: Let \mathcal{C}^* be the optimal solution.

.....

- Recall that $\Phi(\mathcal{C}) = \sum_{S \in \mathcal{C}} w(S) \cdot H_{|S|}$.
- Adding in any $S^* \in \mathcal{C}^*$ and pruning does not improve local search:

$$\underbrace{w(S^*)H_{|S^*|}}_{\text{increase in } \Phi \text{ from } S^*} \geq \sum_{S \in \mathcal{C}} \underbrace{w(S)(H_{|S|} - H_{|S \setminus S^*|})}_{\text{savings from pruning } S \to S \setminus S^*}$$
• $H_{|S|} - H_{|S \setminus S^*|} = \frac{1}{|S \setminus S^*| + 1} + \frac{1}{|S \setminus S^*| + 2} + \dots + \frac{1}{|S|} \geq |S \cap S^*| \cdot \frac{1}{|S|}$

$$\implies w(S^*)H_{|S^*|} \geq \sum_{S \in \mathcal{C}} w(S)|S \cap S^*| \cdot \frac{1}{|S|}$$

$$\sum_{S^* \in \mathcal{C}^*} w(S^*)H_{|S^*|} \geq \sum_{S^* \in \mathcal{C}^*} \sum_{S \in \mathcal{C}} w(S)|S \cap S^*| \cdot \frac{1}{|S|}$$

$$= \sum_{S \in \mathcal{C}} w(S) \underbrace{\sum_{S^* \in \mathcal{C}^*} |S \cap S^*| \cdot \frac{1}{|S|}}_{=1} = ALG$$

- Theorem: width-1 local search with the Rosenthal potential is an H_k -approximation
- Proof: Let C^* be the optimal solution.
 - Recall that $\Phi(\mathcal{C}) = \sum_{S \in \mathcal{C}} w(S) \cdot H_{|S|}$.
 - Adding in any $S^* \in C^*$ and pruning does not improve local search:

$$\underbrace{w(S^*)H_{|S^*|}}_{\text{increase in } \Phi \text{ from } S^*} \geq \sum_{S \in \mathcal{C}} \underbrace{w(S)\left(H_{|S|} - H_{|S \setminus S^*|}\right)}_{\text{savings from pruning } S \to S \setminus S^*}$$
• $H_{|S|} - H_{|S \setminus S^*|} = \frac{1}{|S \setminus S^*| + 1} + \frac{1}{|S \setminus S^*| + 2} + \dots + \frac{1}{|S|} \geq |S \cap S^*| \cdot \frac{1}{|S|}$

$$\Rightarrow w(S^*)H_{|S^*|} \geq \sum_{S \in \mathcal{C}} w(S)|S \cap S^*| \cdot \frac{1}{|S|}$$
 $H_k \cdot OPT \geq \sum_{S^* \in \mathcal{C}^*} w(S^*)H_{|S^*|} \geq \sum_{S^* \in \mathcal{C}^*} \sum_{S \in \mathcal{C}} w(S)|S \cap S^*| \cdot \frac{1}{|S|}$

$$= \sum_{S \in \mathcal{C}} w(S) \sum_{S^* \in \mathcal{C}^*} |S \cap S^*| \cdot \frac{1}{|S|} = ALG \square$$

• Theorem: width-2 local search with the Rosenthal potential is an $H_k(1 - \Theta(1/k^2))$ -approximation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Theorem: width-2 local search with the Rosenthal potential is an H_k(1 – Θ(1/k²))-approximation
- Where was the width-1 proof tight?

A D M A

- Theorem: width-2 local search with the Rosenthal potential is an H_k(1 − Θ(1/k²))-approximation
- Where was the width-1 proof tight?
- $H_{|S|} H_{|S \setminus S^*|} = \frac{1}{|S \setminus S^*| + 1} + \frac{1}{|S \setminus S^*| + 2} + \dots + \frac{1}{|S|} \ge |S \cap S^*| \cdot \frac{1}{|S|}$

A D M A

- Theorem: width-2 local search with the Rosenthal potential is an H_k(1 − Θ(1/k²))-approximation
- Where was the width-1 proof tight?
- $H_{|S|} H_{|S \setminus S^*|} = \frac{1}{|S \setminus S^*| + 1} + \frac{1}{|S \setminus S^*| + 2} + \dots + \frac{1}{|S|} \ge |S \cap S^*| \cdot \frac{1}{|S|}$
- Tight if $|S \cap S^*| = 1$. What if $|S \cap S^*| = 2$?

(日) (日) (日) (日) (日) (日) (日)

- Theorem: width-2 local search with the Rosenthal potential is an H_k(1 − Θ(1/k²))-approximation
- Where was the width-1 proof tight?
- $H_{|S|} H_{|S \setminus S^*|} = \frac{1}{|S \setminus S^*| + 1} + \frac{1}{|S \setminus S^*| + 2} + \dots + \frac{1}{|S|} \ge |S \cap S^*| \cdot \frac{1}{|S|}$
- Tight if $|S \cap S^*| = 1$. What if $|S \cap S^*| = 2$?
 - $\frac{1}{|S|-1} + \frac{1}{|S|} = \frac{2}{|S|} + \Theta(\frac{1}{|S|^2}) \ge (1 + \Theta(\frac{1}{|S|})) \cdot \frac{1}{|S|}$

A D M A

- Theorem: width-2 local search with the Rosenthal potential is an H_k(1 – Θ(1/k²))-approximation
- Where was the width-1 proof tight?
- $H_{|S|} H_{|S \setminus S^*|} = \frac{1}{|S \setminus S^*| + 1} + \frac{1}{|S \setminus S^*| + 2} + \dots + \frac{1}{|S|} \ge |S \cap S^*| \cdot \frac{1}{|S|}$
- Tight if $|S \cap S^*| = 1$. What if $|S \cap S^*| = 2$?

•
$$\frac{1}{|S|-1} + \frac{1}{|S|} = \frac{2}{|S|} + \Theta(\frac{1}{|S|^2}) \ge (1 + \Theta(\frac{1}{|S|})) \cdot \frac{1}{|S|}$$

• More generally, $H_{|S|} - H_{|S \setminus S^*|} \ge (1 + \Theta(\frac{1}{|S|})) \cdot \frac{1}{|S|}$ as long as $|S \cap S^*| \ge 2$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 </

- Theorem: width-2 local search with the Rosenthal potential is an H_k(1 − Θ(1/k²))-approximation
- Where was the width-1 proof tight?
- $H_{|S|} H_{|S \setminus S^*|} = \frac{1}{|S \setminus S^*| + 1} + \frac{1}{|S \setminus S^*| + 2} + \dots + \frac{1}{|S|} \ge |S \cap S^*| \cdot \frac{1}{|S|}$
- Tight if $|S \cap S^*| = 1$. What if $|S \cap S^*| = 2$?

•
$$\frac{1}{|S|-1} + \frac{1}{|S|} = \frac{2}{|S|} + \Theta(\frac{1}{|S|^2}) \ge (1 + \Theta(\frac{1}{|S|})) \cdot \frac{1}{|S|}$$

- More generally, $H_{|S|} H_{|S \setminus S^*|} \ge (1 + \Theta(\frac{1}{|S|})) \cdot \frac{1}{|S|}$ as long as $|S \cap S^*| \ge 2$
- Adding in any $S_1^*, S_2^* \in \mathcal{C}^*$ and pruning does not improve local search:

$$\underbrace{w(S^*)H_{|S_1^*\cup S_2^*|}}_{\text{increase in }\Phi \text{ from }S^*} \geq \underbrace{\sum_{S\in \mathcal{C}} \underbrace{w(S)\left(H_{|S|}-H_{|S\setminus (S_1^*\cup S_2^*)|}\right)}_{\text{savings from pruning }S \to S\setminus (S_1^*\cup S_2^*)}.$$

・ロト・日本・日本・日本・日本

- Theorem: width-2 local search with the Rosenthal potential is an H_k(1 − Θ(1/k²))-approximation
- Where was the width-1 proof tight?
- $H_{|S|} H_{|S \setminus S^*|} = \frac{1}{|S \setminus S^*| + 1} + \frac{1}{|S \setminus S^*| + 2} + \dots + \frac{1}{|S|} \ge |S \cap S^*| \cdot \frac{1}{|S|}$
- Tight if $|S \cap S^*| = 1$. What if $|S \cap S^*| = 2$?

$$\bullet \ \frac{1}{|S|-1} + \frac{1}{|S|} = \frac{2}{|S|} + \Theta(\frac{1}{|S|^2}) \ge (1 + \Theta(\frac{1}{|S|})) \cdot \frac{1}{|S|}$$

- More generally, $H_{|S|} H_{|S \setminus S^*|} \ge (1 + \Theta(\frac{1}{|S|})) \cdot \frac{1}{|S|}$ as long as $|S \cap S^*| \ge 2$
- Adding in any S^{*}₁, S^{*}₂ ∈ C^{*} and pruning does not improve local search:

$$\underbrace{w(S^*)H_{|S_1^*\cup S_2^*|}}_{\text{increase in }\Phi \text{ from }S^*} \geq \sum_{S\in\mathcal{C}}\underbrace{w(S)\left(H_{|S|}-H_{|S\setminus(S_1^*\cup S_2^*)|}\right)}_{\text{has }(1+\Theta(\frac{1}{|S|}))\text{ "often enough"}}.$$

- Theorem: width-2 local search with the Rosenthal potential is an H_k(1 – Θ(1/k²))-approximation
- Where was the width-1 proof tight?
- $H_{|S|} H_{|S \setminus S^*|} = \frac{1}{|S \setminus S^*| + 1} + \frac{1}{|S \setminus S^*| + 2} + \dots + \frac{1}{|S|} \ge |S \cap S^*| \cdot \frac{1}{|S|}$
- Tight if $|S \cap S^*| = 1$. What if $|S \cap S^*| = 2$?

$$\bullet \ \frac{1}{|S|-1} + \frac{1}{|S|} = \frac{2}{|S|} + \Theta(\frac{1}{|S|^2}) \ge (1 + \Theta(\frac{1}{|S|})) \cdot \frac{1}{|S|}$$

- More generally, $H_{|S|} H_{|S \setminus S^*|} \ge (1 + \Theta(\frac{1}{|S|})) \cdot \frac{1}{|S|}$ as long as $|S \cap S^*| \ge 2$
- Adding in any $S_1^*, S_2^* \in \mathcal{C}^*$ and pruning does not improve local search:

$$\underbrace{w(S^*)H_{|S_1^*\cup S_2^*|}}_{\text{increase in }\Phi \text{ from }S^*} \geq \sum_{S\in\mathcal{C}}\underbrace{w(S)\left(H_{|S|}-H_{|S\setminus(S_1^*\cup S_2^*)|}\right)}_{\text{has }(1+\Theta(\frac{1}{|S|})) \text{ "often enough"}}.$$

• Repeat analysis from before: $ALG \leq (1 - \Theta(1/k^2))H_kOPT$

• Can fine-tune function f(s) to get approximation $H_k - \Theta(\frac{1}{k})$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

- Can fine-tune function f(s) to get approximation $H_k \Theta(\frac{1}{k})$
- Width-*k* local search gives approximation $H_k \Theta(\frac{\log^2 k}{k})$

- Can fine-tune function f(s) to get approximation $H_k \Theta(\frac{1}{k})$
- Width-*k* local search gives approximation $H_k \Theta(\frac{\log^2 k}{k})$
- Best possible bounds for non-oblivious local search with potential function $\Phi = \sum_{S \in C} w(S) \cdot f(|S|)$

- Can fine-tune function f(s) to get approximation $H_k \Theta(\frac{1}{k})$
- Width-*k* local search gives approximation $H_k \Theta(\frac{\log^2 k}{k})$
- Best possible bounds for non-oblivious local search with potential function $\Phi = \sum_{S \in C} w(S) \cdot f(|S|)$
- Open: approximation H_k Θ(1)? (Known for unweighted set cover!)