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• This talk: local search algorithm for set cover
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• Exact Set Cover: given a family of sets S ⊆ U with weights
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Exact Set Cover

• Exact Set Cover: given a family of sets S ⊆ U with weights
w(S), find a minimum weight collection of sets that
partition U
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• Try all ways to add ≤ w disjoint sets S1, . . . , Sw and prune
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increase in Φ from S∗

≥
∑

S∈C

w(S)
(

H|S| − H|S\(S∗
1∪S∗

2 )|

)

︸ ︷︷ ︸
has (1+Θ( 1

|S| )) “often enough”

.



Width-2 Local Search
• Theorem: width-2 local search with the Rosenthal potential

is an Hk (1 − Θ(1/k2))-approximation
• Where was the width-1 proof tight?
• H|S|−H|S\S∗| = 1

|S\S∗|+1 + 1
|S\S∗|+2 + ∙ ∙ ∙+ 1

|S| ≥ |S∩S∗| ∙ 1
|S|

• Tight if |S ∩ S∗| = 1. What if |S ∩ S∗| = 2?
• 1

|S|−1 + 1
|S| = 2

|S| + Θ( 1
|S|2 ) ≥ (1 + Θ( 1

|S| )) ∙
1
|S|

• More generally, H|S| − H|S\S∗| ≥ (1 + Θ( 1
|S|)) ∙

1
|S| as long

as |S ∩ S∗| ≥ 2
• Adding in any S∗

1, S∗
2 ∈ C∗ and pruning does not improve

local search:

w(S∗)H|S∗
1∪S∗

2 |︸ ︷︷ ︸
increase in Φ from S∗

≥
∑

S∈C

w(S)
(

H|S| − H|S\(S∗
1∪S∗

2 )|

)

︸ ︷︷ ︸
has (1+Θ( 1

|S| )) “often enough”

.

• Repeat analysis from before: ALG ≤ (1 − Θ(1/k2))HkOPT
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Further Improvements

• Can fine-tune function f (s) to get approximation Hk − Θ( 1
k )

• Width-k local search gives approximation Hk − Θ( log2 k
k )

• Best possible bounds for non-oblivious local search with
potential function Φ =

∑
S∈C w(S) ∙ f (|S|)

• Open: approximation Hk − Θ(1)? (Known for unweighted
set cover!)


