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Set Cover: given a family of sets S C U with weights w(S),
find a minimum weight collection of sets that cover U

Parameter k: all sets S have size < k (here, k = 3)
Folklore greedy algorithm: Hy-approximation where
He=1+3+ - +%~Ink+0(1)

Hard to approximate within Ink — O(InInk)
[Feige’'98, Trevisan'01]

This talk: local search algorithm for set cover
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Exact Set Cover

e Exact Set Cover: given a family of sets S C U with weights
w(S), find a minimum weight collection of sets that
partition U

e Transformation: for each original set S, add all subsets of
S, each of weight w(S)
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e 1/n, <<1/ €< 1/n,

e f(s) should be increasing on s
e a=Inkitryf(s)=Hs=1+%+---+1?
e Inspired by [Traub-Zenklusen’21] on Steiner tree by
non-oblivious local search
e ¢ is called the Rosenthal potential
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Theorem: width-2 local search with the Rosenthal potential
is an Hy (1 — ©(1/k?))-approximation

Where was the width-1 proof tight?
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Tight if |[S N S*| = 1. What if |[SNS*| = 2?
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More generally, His| — His\s+| > (1 + @(%)) ﬁ as long
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local search:
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Repeat analysis from before: ALG < (1 — ©(1/k?))H OPT
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Further Improvements

Can fine-tune function f(s) to get approximation Hy — @(%)

Width-k local search gives approximation Hy — @('O‘fk)

Best possible bounds for non-oblivious local search with
potential function ® = " _-w(S) - f(|S|)

Open: approximation Hy — ©(1)? (Known for unweighted
set cover!)




