
A Local Search-Based Approach
for Set Covering

Jason Li (Simons Institute)
Joint with Anupam Gupta (CMU), Euiwoong Lee (UMich)

SODA 2023
January 23, 2023

Set Cover

• Set Cover: given a family of sets S ⊆ U with weights w(S),
find a minimum weight collection of sets that cover U

1

52

2

2

Set Cover

• Set Cover: given a family of sets S ⊆ U with weights w(S),
find a minimum weight collection of sets that cover U

1

52

2

2

Set Cover

• Set Cover: given a family of sets S ⊆ U with weights w(S),
find a minimum weight collection of sets that cover U

1

52

2

2

• Parameter k : all sets S have size ≤ k (here, k = 3)

Set Cover

• Set Cover: given a family of sets S ⊆ U with weights w(S),
find a minimum weight collection of sets that cover U

1

52

2

2

• Parameter k : all sets S have size ≤ k (here, k = 3)

• Folklore greedy algorithm: Hk -approximation where
Hk = 1 + 1

2 + ∙ ∙ ∙ + 1
k ≈ ln k + O(1)

Set Cover

• Set Cover: given a family of sets S ⊆ U with weights w(S),
find a minimum weight collection of sets that cover U

1

52

2

2

• Parameter k : all sets S have size ≤ k (here, k = 3)

• Folklore greedy algorithm: Hk -approximation where
Hk = 1 + 1

2 + ∙ ∙ ∙ + 1
k ≈ ln k + O(1)

• Hard to approximate within ln k − O(ln ln k)
[Feige’98,Trevisan’01]

Set Cover

• Set Cover: given a family of sets S ⊆ U with weights w(S),
find a minimum weight collection of sets that cover U

1

52

2

2

• Parameter k : all sets S have size ≤ k (here, k = 3)

• Folklore greedy algorithm: Hk -approximation where
Hk = 1 + 1

2 + ∙ ∙ ∙ + 1
k ≈ ln k + O(1)

• Hard to approximate within ln k − O(ln ln k)
[Feige’98,Trevisan’01]

• This talk: local search algorithm for set cover

Exact Set Cover

• Exact Set Cover: given a family of sets S ⊆ U with weights
w(S), find a minimum weight collection of sets that
partition U

1

52

2

2

1

52

2

2

Exact Set Cover

• Exact Set Cover: given a family of sets S ⊆ U with weights
w(S), find a minimum weight collection of sets that
partition U

1

52

2

2

• Transformation: for each original set S, add all subsets of
S, each of weight w(S)

1

52

2

2

Local Search
• Local search for set cover:

1

5 =⇒
w = 2

1

52

2

2

1

ε ε εεε ε

ε� 1/n, w � n

Local Search
• Local search for set cover:

• Maintain a feasible solution at all times

1

5 =⇒
w = 2

1

52

2

2

1

ε ε εεε ε

ε� 1/n, w � n

Local Search
• Local search for set cover (of width w):

• Maintain a feasible solution at all times
• Try all ways to add ≤ w disjoint sets S1, . . . , Sw and prune

existing sets to ensure exact cover.

1

5 =⇒
w = 2

1

52

2

2

1

ε ε εεε ε

ε� 1/n, w � n

Local Search
• Local search for set cover (of width w):

• Maintain a feasible solution at all times
• Try all ways to add ≤ w disjoint sets S1, . . . , Sw and prune

existing sets to ensure exact cover.
1

5 =⇒w = 2

1

52

2

2

1

ε ε εεε ε

ε� 1/n, w � n

Local Search
• Local search for set cover (of width w):

• Maintain a feasible solution at all times
• Try all ways to add ≤ w disjoint sets S1, . . . , Sw and prune

existing sets to ensure exact cover.
1

5 =⇒w = 2

1

52

2

2

1

ε ε εεε ε

ε� 1/n, w � n

Local Search
• Local search for set cover (of width w):

• Maintain a feasible solution at all times
• Try all ways to add ≤ w disjoint sets S1, . . . , Sw and prune

existing sets to ensure exact cover.
1

5 =⇒w = 2

1

52

2

2

If feasible solution of lower cost, move to new solution.

1

ε ε εεε ε

ε� 1/n, w � n

Local Search
• Local search for set cover (of width w):

• Maintain a feasible solution at all times
• Try all ways to add ≤ w disjoint sets S1, . . . , Sw and prune

existing sets to ensure exact cover.
1

5 =⇒w = 2

1

52

2

2

If feasible solution of lower cost, move to new solution.
• Repeat until no further improvement is possible.

1

ε ε εεε ε

ε� 1/n, w � n

Local Search
• Local search for set cover (of width w):

• Maintain a feasible solution at all times
• Try all ways to add ≤ w disjoint sets S1, . . . , Sw and prune

existing sets to ensure exact cover.
1

5 =⇒w = 2

1

52

2

2

If feasible solution of lower cost, move to new solution.
• Repeat until no further improvement is possible.

• Does not achieve any constant approximation!

1

ε ε εεε ε

ε� 1/n, w � n

Local Search
• Local search for set cover (of width w):

• Maintain a feasible solution at all times
• Try all ways to add ≤ w disjoint sets S1, . . . , Sw and prune

existing sets to ensure exact cover.
1

5 =⇒w = 2

1

52

2

2

If feasible solution of lower cost, move to new solution.
• Repeat until no further improvement is possible.

• Does not achieve any constant approximation!

1

ε ε εεε ε

ε� 1/n, w � n

Local Search
• Local search for set cover (of width w):

• Maintain a feasible solution at all times
• Try all ways to add ≤ w disjoint sets S1, . . . , Sw and prune

existing sets to ensure exact cover.
1

5 =⇒w = 2

1

52

2

2

If feasible solution of lower cost, move to new solution.
• Repeat until no further improvement is possible.

• Does not achieve any constant approximation!

1

ε ε εεε ε

ε� 1/n, w � n

Local Search
• Local search for set cover (of width w):

• Maintain a feasible solution at all times
• Try all ways to add ≤ w disjoint sets S1, . . . , Sw and prune

existing sets to ensure exact cover.
1

5 =⇒w = 2

1

52

2

2

If feasible solution of lower cost, move to new solution.
• Repeat until no further improvement is possible.

• Does not achieve any constant approximation!

1
ε ε εεε ε

ε� 1/n, w � n

Local Search
• Local search for set cover (of width w):

• Maintain a feasible solution at all times
• Try all ways to add ≤ w disjoint sets S1, . . . , Sw and prune

existing sets to ensure exact cover.
1

5 =⇒w = 2

1

52

2

2

If feasible solution of lower cost, move to new solution.
• Repeat until no further improvement is possible.

• Does not achieve any constant approximation!

1

ε ε εεε ε

ε� 1/n, w � n

Non-Oblivious Local Search
• What should local search do?

1

ε ε εεε ε

ε� 1/n, w � n

1
ε ε εεε ε

ε� 1/n, w � n

1
ε ε εεε ε

ε� 1/n, w � n

1

ε ε εεε ε

ε� 1/n, w � n

Non-Oblivious Local Search
• What should local search do?

1

ε ε εεε ε

ε� 1/n, w � n

1
ε ε εεε ε

ε� 1/n, w � n

1
ε ε εεε ε

ε� 1/n, w � n

1

ε ε εεε ε

ε� 1/n, w � n

Non-Oblivious Local Search
• What should local search do?

1
ε ε εεε ε

ε� 1/n, w � n

1
ε ε εεε ε

ε� 1/n, w � n

1
ε ε εεε ε

ε� 1/n, w � n

1

ε ε εεε ε

ε� 1/n, w � n

Non-Oblivious Local Search
• What should local search do?

1
ε ε εεε ε

ε� 1/n, w � n

1
ε ε εεε ε

ε� 1/n, w � n

1
ε ε εεε ε

ε� 1/n, w � n

1

ε ε εεε ε

ε� 1/n, w � n

Non-Oblivious Local Search
• What should local search do?

1

ε ε εεε ε

ε� 1/n, w � n

1
ε ε εεε ε

ε� 1/n, w � n

1
ε ε εεε ε

ε� 1/n, w � n

1

ε ε εεε ε

ε� 1/n, w � n

Non-Oblivious Local Search
• What should local search do?

1

ε ε εεε ε

ε� 1/n, w � n

• Define a custom potential function Φ(C) to measure
progress: Φ(C) =

∑
S∈C w(S) ∙ f (|S|)

1
ε ε εεε ε

ε� 1/n, w � n

1
ε ε εεε ε

ε� 1/n, w � n

1

ε ε εεε ε

ε� 1/n, w � n

Non-Oblivious Local Search
• What should local search do?

1

ε ε εεε ε

ε� 1/n, w � n

• Define a custom potential function Φ(C) to measure
progress: Φ(C) =

∑
S∈C w(S) ∙ f (|S|)

• Approximates true objective: w(C) ≤ Φ(C) ≤ α w(C) for
approximation α, so enforce 1 ≤ f (s) ≤ α

1
ε ε εεε ε

ε� 1/n, w � n

1
ε ε εεε ε

ε� 1/n, w � n

1

ε ε εεε ε

ε� 1/n, w � n

Non-Oblivious Local Search
• What should local search do?

1

ε ε εεε ε

ε� 1/n, w � n

• Define a custom potential function Φ(C) to measure
progress: Φ(C) =

∑
S∈C w(S) ∙ f (|S|)

• Approximates true objective: w(C) ≤ Φ(C) ≤ α w(C) for
approximation α, so enforce 1 ≤ f (s) ≤ α

1
ε ε εεε ε

ε� 1/n, w � n

1
ε ε εεε ε

ε� 1/n, w � n

1

ε ε εεε ε

ε� 1/n, w � n

Non-Oblivious Local Search
• What should local search do?

1

ε ε εεε ε

ε� 1/n, w � n

• Define a custom potential function Φ(C) to measure
progress: Φ(C) =

∑
S∈C w(S) ∙ f (|S|)

• Approximates true objective: w(C) ≤ Φ(C) ≤ α w(C) for
approximation α, so enforce 1 ≤ f (s) ≤ α

1
ε ε εεε ε

ε� 1/n, w � n

1
ε ε εεε ε

ε� 1/n, w � n

1

ε ε εεε ε

ε� 1/n, w � n

• f (s) should be increasing on s

Non-Oblivious Local Search
• What should local search do?

1

ε ε εεε ε

ε� 1/n, w � n

• Define a custom potential function Φ(C) to measure
progress: Φ(C) =

∑
S∈C w(S) ∙ f (|S|)

• Approximates true objective: w(C) ≤ Φ(C) ≤ α w(C) for
approximation α, so enforce 1 ≤ f (s) ≤ α

1
ε ε εεε ε

ε� 1/n, w � n

1
ε ε εεε ε

ε� 1/n, w � n

1

ε ε εεε ε

ε� 1/n, w � n

• f (s) should be increasing on s
• α = ln k : try f (s) = Hs = 1 + 1

2 + ∙ ∙ ∙ + 1
s ?

Non-Oblivious Local Search
• What should local search do?

1

ε ε εεε ε

ε� 1/n, w � n

• Define a custom potential function Φ(C) to measure
progress: Φ(C) =

∑
S∈C w(S) ∙ f (|S|)

• Approximates true objective: w(C) ≤ Φ(C) ≤ α w(C) for
approximation α, so enforce 1 ≤ f (s) ≤ α

1
ε ε εεε ε

ε� 1/n, w � n

1
ε ε εεε ε

ε� 1/n, w � n

1

ε ε εεε ε

ε� 1/n, w � n

• f (s) should be increasing on s
• α = ln k : try f (s) = Hs = 1 + 1

2 + ∙ ∙ ∙ + 1
s ?

• Inspired by [Traub-Zenklusen’21] on Steiner tree by
non-oblivious local search

Non-Oblivious Local Search
• What should local search do?

1

ε ε εεε ε

ε� 1/n, w � n

• Define a custom potential function Φ(C) to measure
progress: Φ(C) =

∑
S∈C w(S) ∙ f (|S|)

• Approximates true objective: w(C) ≤ Φ(C) ≤ α w(C) for
approximation α, so enforce 1 ≤ f (s) ≤ α

1
ε ε εεε ε

ε� 1/n, w � n

1
ε ε εεε ε

ε� 1/n, w � n

1

ε ε εεε ε

ε� 1/n, w � n

• f (s) should be increasing on s
• α = ln k : try f (s) = Hs = 1 + 1

2 + ∙ ∙ ∙ + 1
s ?

• Inspired by [Traub-Zenklusen’21] on Steiner tree by
non-oblivious local search

• Φ is called the Rosenthal potential

Width-1 Local Search
• Theorem: width-1 local search with the Rosenthal potential

is an Hk -approximation

Width-1 Local Search
• Theorem: width-1 local search with the Rosenthal potential

is an Hk -approximation
• Proof: Let C∗ be the optimal solution.

Width-1 Local Search
• Theorem: width-1 local search with the Rosenthal potential

is an Hk -approximation
• Proof: Let C∗ be the optimal solution.

• Recall that Φ(C) =
∑

S∈C w(S) ∙ H|S|.

Width-1 Local Search
• Theorem: width-1 local search with the Rosenthal potential

is an Hk -approximation
• Proof: Let C∗ be the optimal solution.

• Recall that Φ(C) =
∑

S∈C w(S) ∙ H|S|.
• Adding in any S∗ ∈ C∗ and pruning does not improve local

search:

w(S∗)H|S∗|
︸ ︷︷ ︸

increase in Φ from S∗

≥
∑

S∈C

w(S)
(
H|S| − H|S\S∗|

)

︸ ︷︷ ︸
savings from pruning S → S\S∗

.

Width-1 Local Search
• Theorem: width-1 local search with the Rosenthal potential

is an Hk -approximation
• Proof: Let C∗ be the optimal solution.

• Recall that Φ(C) =
∑

S∈C w(S) ∙ H|S|.
• Adding in any S∗ ∈ C∗ and pruning does not improve local

search:

w(S∗)H|S∗|
︸ ︷︷ ︸

increase in Φ from S∗

≥
∑

S∈C

w(S)
(
H|S| − H|S\S∗|

)

︸ ︷︷ ︸
savings from pruning S → S\S∗

.

• H|S|−H|S\S∗| = 1
|S\S∗|+1 + 1

|S\S∗|+2 + ∙ ∙ ∙+ 1
|S| ≥ |S∩S∗| ∙ 1

|S|

Width-1 Local Search
• Theorem: width-1 local search with the Rosenthal potential

is an Hk -approximation
• Proof: Let C∗ be the optimal solution.

• Recall that Φ(C) =
∑

S∈C w(S) ∙ H|S|.
• Adding in any S∗ ∈ C∗ and pruning does not improve local

search:

w(S∗)H|S∗|
︸ ︷︷ ︸

increase in Φ from S∗

≥
∑

S∈C

w(S)
(
H|S| − H|S\S∗|

)

︸ ︷︷ ︸
savings from pruning S → S\S∗

.

• H|S|−H|S\S∗| = 1
|S\S∗|+1 + 1

|S\S∗|+2 + ∙ ∙ ∙+ 1
|S| ≥ |S∩S∗| ∙ 1

|S|

=⇒ w(S∗)H|S∗| ≥
∑

S∈C w(S)|S ∩ S∗| ∙ 1
|S|

Width-1 Local Search
• Theorem: width-1 local search with the Rosenthal potential

is an Hk -approximation
• Proof: Let C∗ be the optimal solution.

• Recall that Φ(C) =
∑

S∈C w(S) ∙ H|S|.
• Adding in any S∗ ∈ C∗ and pruning does not improve local

search:

w(S∗)H|S∗|
︸ ︷︷ ︸

increase in Φ from S∗

≥
∑

S∈C

w(S)
(
H|S| − H|S\S∗|

)

︸ ︷︷ ︸
savings from pruning S → S\S∗

.

• H|S|−H|S\S∗| = 1
|S\S∗|+1 + 1

|S\S∗|+2 + ∙ ∙ ∙+ 1
|S| ≥ |S∩S∗| ∙ 1

|S|

=⇒ w(S∗)H|S∗| ≥
∑

S∈C w(S)|S ∩ S∗| ∙ 1
|S|

∑

S∗∈C∗

w(S∗)H|S∗| ≥
∑

S∗∈C∗

∑

S∈C

w(S)|S ∩ S∗| ∙
1
|S|

=
∑

S∈C

w(S)
∑

S∗∈C∗

|S ∩ S∗| ∙
1
|S|

︸ ︷︷ ︸
=1

Width-1 Local Search
• Theorem: width-1 local search with the Rosenthal potential

is an Hk -approximation
• Proof: Let C∗ be the optimal solution.

• Recall that Φ(C) =
∑

S∈C w(S) ∙ H|S|.
• Adding in any S∗ ∈ C∗ and pruning does not improve local

search:

w(S∗)H|S∗|
︸ ︷︷ ︸

increase in Φ from S∗

≥
∑

S∈C

w(S)
(
H|S| − H|S\S∗|

)

︸ ︷︷ ︸
savings from pruning S → S\S∗

.

• H|S|−H|S\S∗| = 1
|S\S∗|+1 + 1

|S\S∗|+2 + ∙ ∙ ∙+ 1
|S| ≥ |S∩S∗| ∙ 1

|S|

=⇒ w(S∗)H|S∗| ≥
∑

S∈C w(S)|S ∩ S∗| ∙ 1
|S|

∑

S∗∈C∗

w(S∗)H|S∗| ≥
∑

S∗∈C∗

∑

S∈C

w(S)|S ∩ S∗| ∙
1
|S|

=
∑

S∈C

w(S)
∑

S∗∈C∗

|S ∩ S∗| ∙
1
|S|

︸ ︷︷ ︸
=1

= ALG

Width-1 Local Search
• Theorem: width-1 local search with the Rosenthal potential

is an Hk -approximation
• Proof: Let C∗ be the optimal solution.

• Recall that Φ(C) =
∑

S∈C w(S) ∙ H|S|.
• Adding in any S∗ ∈ C∗ and pruning does not improve local

search:

w(S∗)H|S∗|
︸ ︷︷ ︸

increase in Φ from S∗

≥
∑

S∈C

w(S)
(
H|S| − H|S\S∗|

)

︸ ︷︷ ︸
savings from pruning S → S\S∗

.

• H|S|−H|S\S∗| = 1
|S\S∗|+1 + 1

|S\S∗|+2 + ∙ ∙ ∙+ 1
|S| ≥ |S∩S∗| ∙ 1

|S|

=⇒ w(S∗)H|S∗| ≥
∑

S∈C w(S)|S ∩ S∗| ∙ 1
|S|

Hk ∙ OPT ≥
∑

S∗∈C∗

w(S∗)H|S∗| ≥
∑

S∗∈C∗

∑

S∈C

w(S)|S ∩ S∗| ∙
1
|S|

=
∑

S∈C

w(S)
∑

S∗∈C∗

|S ∩ S∗| ∙
1
|S|

︸ ︷︷ ︸
=1

= ALG

Width-2 Local Search
• Theorem: width-2 local search with the Rosenthal potential

is an Hk (1 − Θ(1/k2))-approximation

Width-2 Local Search
• Theorem: width-2 local search with the Rosenthal potential

is an Hk (1 − Θ(1/k2))-approximation
• Where was the width-1 proof tight?

Width-2 Local Search
• Theorem: width-2 local search with the Rosenthal potential

is an Hk (1 − Θ(1/k2))-approximation
• Where was the width-1 proof tight?
• H|S|−H|S\S∗| = 1

|S\S∗|+1 + 1
|S\S∗|+2 + ∙ ∙ ∙+ 1

|S| ≥ |S∩S∗| ∙ 1
|S|

Width-2 Local Search
• Theorem: width-2 local search with the Rosenthal potential

is an Hk (1 − Θ(1/k2))-approximation
• Where was the width-1 proof tight?
• H|S|−H|S\S∗| = 1

|S\S∗|+1 + 1
|S\S∗|+2 + ∙ ∙ ∙+ 1

|S| ≥ |S∩S∗| ∙ 1
|S|

• Tight if |S ∩ S∗| = 1. What if |S ∩ S∗| = 2?

Width-2 Local Search
• Theorem: width-2 local search with the Rosenthal potential

is an Hk (1 − Θ(1/k2))-approximation
• Where was the width-1 proof tight?
• H|S|−H|S\S∗| = 1

|S\S∗|+1 + 1
|S\S∗|+2 + ∙ ∙ ∙+ 1

|S| ≥ |S∩S∗| ∙ 1
|S|

• Tight if |S ∩ S∗| = 1. What if |S ∩ S∗| = 2?
• 1

|S|−1 + 1
|S| = 2

|S| + Θ(1
|S|2) ≥ (1 + Θ(1

|S|)) ∙
1
|S|

Width-2 Local Search
• Theorem: width-2 local search with the Rosenthal potential

is an Hk (1 − Θ(1/k2))-approximation
• Where was the width-1 proof tight?
• H|S|−H|S\S∗| = 1

|S\S∗|+1 + 1
|S\S∗|+2 + ∙ ∙ ∙+ 1

|S| ≥ |S∩S∗| ∙ 1
|S|

• Tight if |S ∩ S∗| = 1. What if |S ∩ S∗| = 2?
• 1

|S|−1 + 1
|S| = 2

|S| + Θ(1
|S|2) ≥ (1 + Θ(1

|S|)) ∙
1
|S|

• More generally, H|S| − H|S\S∗| ≥ (1 + Θ(1
|S|)) ∙

1
|S| as long

as |S ∩ S∗| ≥ 2

Width-2 Local Search
• Theorem: width-2 local search with the Rosenthal potential

is an Hk (1 − Θ(1/k2))-approximation
• Where was the width-1 proof tight?
• H|S|−H|S\S∗| = 1

|S\S∗|+1 + 1
|S\S∗|+2 + ∙ ∙ ∙+ 1

|S| ≥ |S∩S∗| ∙ 1
|S|

• Tight if |S ∩ S∗| = 1. What if |S ∩ S∗| = 2?
• 1

|S|−1 + 1
|S| = 2

|S| + Θ(1
|S|2) ≥ (1 + Θ(1

|S|)) ∙
1
|S|

• More generally, H|S| − H|S\S∗| ≥ (1 + Θ(1
|S|)) ∙

1
|S| as long

as |S ∩ S∗| ≥ 2
• Adding in any S∗

1, S∗
2 ∈ C∗ and pruning does not improve

local search:

w(S∗)H|S∗
1∪S∗

2 |︸ ︷︷ ︸
increase in Φ from S∗

≥
∑

S∈C

w(S)
(

H|S| − H|S\(S∗
1∪S∗

2)|

)

︸ ︷︷ ︸
savings from pruning S →S\(S∗

1∪S∗
2)

.

Width-2 Local Search
• Theorem: width-2 local search with the Rosenthal potential

is an Hk (1 − Θ(1/k2))-approximation
• Where was the width-1 proof tight?
• H|S|−H|S\S∗| = 1

|S\S∗|+1 + 1
|S\S∗|+2 + ∙ ∙ ∙+ 1

|S| ≥ |S∩S∗| ∙ 1
|S|

• Tight if |S ∩ S∗| = 1. What if |S ∩ S∗| = 2?
• 1

|S|−1 + 1
|S| = 2

|S| + Θ(1
|S|2) ≥ (1 + Θ(1

|S|)) ∙
1
|S|

• More generally, H|S| − H|S\S∗| ≥ (1 + Θ(1
|S|)) ∙

1
|S| as long

as |S ∩ S∗| ≥ 2
• Adding in any S∗

1, S∗
2 ∈ C∗ and pruning does not improve

local search:

w(S∗)H|S∗
1∪S∗

2 |︸ ︷︷ ︸
increase in Φ from S∗

≥
∑

S∈C

w(S)
(

H|S| − H|S\(S∗
1∪S∗

2)|

)

︸ ︷︷ ︸
has (1+Θ(1

|S|)) “often enough”

.

Width-2 Local Search
• Theorem: width-2 local search with the Rosenthal potential

is an Hk (1 − Θ(1/k2))-approximation
• Where was the width-1 proof tight?
• H|S|−H|S\S∗| = 1

|S\S∗|+1 + 1
|S\S∗|+2 + ∙ ∙ ∙+ 1

|S| ≥ |S∩S∗| ∙ 1
|S|

• Tight if |S ∩ S∗| = 1. What if |S ∩ S∗| = 2?
• 1

|S|−1 + 1
|S| = 2

|S| + Θ(1
|S|2) ≥ (1 + Θ(1

|S|)) ∙
1
|S|

• More generally, H|S| − H|S\S∗| ≥ (1 + Θ(1
|S|)) ∙

1
|S| as long

as |S ∩ S∗| ≥ 2
• Adding in any S∗

1, S∗
2 ∈ C∗ and pruning does not improve

local search:

w(S∗)H|S∗
1∪S∗

2 |︸ ︷︷ ︸
increase in Φ from S∗

≥
∑

S∈C

w(S)
(

H|S| − H|S\(S∗
1∪S∗

2)|

)

︸ ︷︷ ︸
has (1+Θ(1

|S|)) “often enough”

.

• Repeat analysis from before: ALG ≤ (1 − Θ(1/k2))HkOPT

Further Improvements

• Can fine-tune function f (s) to get approximation Hk − Θ(1
k)

Further Improvements

• Can fine-tune function f (s) to get approximation Hk − Θ(1
k)

• Width-k local search gives approximation Hk − Θ(log2 k
k)

Further Improvements

• Can fine-tune function f (s) to get approximation Hk − Θ(1
k)

• Width-k local search gives approximation Hk − Θ(log2 k
k)

• Best possible bounds for non-oblivious local search with
potential function Φ =

∑
S∈C w(S) ∙ f (|S|)

Further Improvements

• Can fine-tune function f (s) to get approximation Hk − Θ(1
k)

• Width-k local search gives approximation Hk − Θ(log2 k
k)

• Best possible bounds for non-oblivious local search with
potential function Φ =

∑
S∈C w(S) ∙ f (|S|)

• Open: approximation Hk − Θ(1)? (Known for unweighted
set cover!)

