A Local Search-Based Approach
for Set Covering

Jason Li (Simons Institute)
Joint with Anupam Gupta (CMU), Euiwoong Lee (UMich)

SODA 2023
January 23, 2023

Set Cover

e Set Cover: given a family of sets S C U with weights w(S),
find a minimum weight collection of sets that cover U
1

QNOND
P‘

Set Cover

e Set Cover: given a family of sets S C U with weights w(S),
find a minimum weight collection of sets that cover U

Set Cover

e Set Cover: given a family of sets S C U with weights w(S),
find a minimum weight collection of sets that cover U

e Parameter k: all sets S have size < k (here, k = 3)

Set Cover

e Set Cover: given a family of sets S C U with weights w(S),
find a minimum weight collection of sets that cover U

e Parameter k: all sets S have size < k (here, k = 3)

e Folklore greedy algorithm: Hy-approximation where
He=1+3+ - +%~Ink+0(1)

Set Cover

e Set Cover: given a family of sets S C U with weights w(S),
find a minimum weight collection of sets that cover U

e Parameter k: all sets S have size < k (here, k = 3)

e Folklore greedy algorithm: Hy-approximation where
He=1+3+ - +%~Ink+0(1)

e Hard to approximate within Ink — O(InInk)
[Feige’'98, Trevisan'01]

Set Cover

Set Cover: given a family of sets S C U with weights w(S),
find a minimum weight collection of sets that cover U

Parameter k: all sets S have size < k (here, k = 3)
Folklore greedy algorithm: Hy-approximation where
He=1+3+ - +%~Ink+0(1)

Hard to approximate within Ink — O(InInk)
[Feige’'98, Trevisan'01]

This talk: local search algorithm for set cover

Exact Set Cover

e Exact Set Cover: given a family of sets S C U with weights
w(S), find a minimum weight collection of sets that
partition U

Exact Set Cover

e Exact Set Cover: given a family of sets S C U with weights
w(S), find a minimum weight collection of sets that
partition U

e Transformation: for each original set S, add all subsets of
S, each of weight w(S)

B
S

Local Search
e Local search for set cover:

Local Search

e Local search for set cover:
e Maintain a feasible solution at all times

Local Search

e Local search for set cover (of width w):
e Maintain a feasible solution at all times
e Try all ways to add < w disjoint sets Sy,..., Sy and prune
existing sets to ensure exact cover.

Local Search

e Local search for set cover (of width w):
e Maintain a feasible solution at all times
e Try all ways to add < w disjoint sets Sy,..., Sy and prune
existing sets to ensure exact cover.

Local Search

e Local search for set cover (of width w):
e Maintain a feasible solution at all times
e Try all ways to add < w disjoint sets Sy,..., Sy and prune
existing sets to ensure exact cover.

0

Local Search

e Local search for set cover (of width w):
e Maintain a feasible solution at all times
e Try all ways to add < w disjoint sets Sy,..., Sy and prune
existing sets to ensure exact cover.

If feasible solution of lower cost, move to new solution.

Local Search

e Local search for set cover (of width w):
e Maintain a feasible solution at all times
e Try all ways to add < w disjoint sets Sy,..., Sy and prune
existing sets to ensure exact cover.

If feasible solution of lower cost, move to new solution.
e Repeat until no further improvement is possible.

Local Search

e Local search for set cover (of width w):
e Maintain a feasible solution at all times
e Try all ways to add < w disjoint sets Sy,..., Sy and prune
existing sets to ensure exact cover.

If feasible solution of lower cost, move to new solution.
e Repeat until no further improvement is possible.

e Does not achieve any constant approximation!

Local Search

e Local search for set cover (of width w):
e Maintain a feasible solution at all times
e Try all ways to add < w disjoint sets Sy,..., Sy and prune
existing sets to ensure exact cover.

If feasible solution of lower cost, move to new solution.
e Repeat until no further improvement is possible.

e Does not achieve any constant approximation!
1

OOOOOO

e 1l/n,w<Kn

Local Search

e Local search for set cover (of width w):
e Maintain a feasible solution at all times
e Try all ways to add < w disjoint sets Sy,..., Sy and prune
existing sets to ensure exact cover.

If feasible solution of lower cost, move to new solution.
e Repeat until no further improvement is possible.

e Does not achieve any constant approximation!
1

OOOOOE

e 1/n,w<Kn

Local Search

e Local search for set cover (of width w):
e Maintain a feasible solution at all times
e Try all ways to add < w disjoint sets Sy,..., Sy and prune
existing sets to ensure exact cover.

If feasible solution of lower cost, move to new solution.
e Repeat until no further improvement is possible.

e Does not achieve any constant approximation!

e 1/n,w<Kn

Local Search

e Local search for set cover (of width w):
e Maintain a feasible solution at all times
e Try all ways to add < w disjoint sets Sy,..., Sy and prune
existing sets to ensure exact cover.

If feasible solution of lower cost, move to new solution.
e Repeat until no further improvement is possible.

e Does not achieve any constant approximation!
1

OOOOOE

e 1/n,w<Kn

Non-Oblivious Local Search
e What should local search do?

Non-Oblivious Local Search
e What should local search do?

LDOOOOR

e 1l/n,w<n

Non-Oblivious Local Search
e What should local search do?

e 1l/n,w<n

Non-Oblivious Local Search
e What should local search do?

000000

e 1l/n,w<n

Non-Oblivious Local Search
e What should local search do?

OOOOOO

e 1l/n,w<n

Non-Oblivious Local Search
e What should local search do?

cos000

 Define a custom potential function ¢(C) to measure
progress: ®(C) = > s W(S) - f(IS])

Non-Oblivious Local Search
e What should local search do?

660000

e 1l/n,w<n

 Define a custom potential function ¢(C) to measure
progress: ®(C) = > scc W(S) - f(IS])
e Approximates true objective: w(C) < ®(C) < aw(C) for
approximation «, so enforce 1 < f(s) < «

Non-Oblivious Local Search
e What should local search do?

000000
e< 1/n, w<n

 Define a custom potential function ¢(C) to measure

progress: ®(C) = > scc W(S) - f(IS])
e Approximates true objective: w(C) < ®(C) < aw(C) for
approximation «, so enforce 1 < f(s) < «

OOELED — GOOOED

1
-
e 1l/n,w<n e<l/n,w<n e 1l/n,w<n

Non-Oblivious Local Search
e What should local search do?

000000
e< 1/n, w<n

 Define a custom potential function ¢(C) to measure

progress: ®(C) = > scc W(S) - f(IS])
e Approximates true objective: w(C) < ®(C) < aw(C) for
approximation «, so enforce 1 < f(s) < «

OOEHED GOOOED

1
-
e 1/n, w< e<l/n,w<n e 1l/n,w<n

1
e f(s) should be increasing on s

Non-Oblivious Local Search
e What should local search do?

e 1l/n,w<n

 Define a custom potential function ¢(C) to measure
progress: ®(C) = > scc W(S) - f(IS])
e Approximates true objective: w(C) < ®(C) < aw(C) for
approxma’uon «, so enforce 1 <f(s)<a

@ OOEHEY) @@@@@

e<1/n, <<1/ e<1/n,
o f(s) should be increasing on s
e a=Inkitryf(s)=Hs=1+%+---+1?

Non-Oblivious Local Search
e What should local search do?

660000

e 1l/n,w<n

 Define a custom potential function ¢(C) to measure

progress: ®(C) = > scc W(S) - f(IS])
e Approximates true objective: w(C) < ®(C) < aw(C) for
approxma’uon «, so enforce 1 <f(s)<a

@ OOEHEY) @@@@@

e 1/n, <<1/ €< 1/n,

e f(s) should be increasing on s
e a=Inkitryf(s)=Hs=1+%+---+1?
e Inspired by [Traub-Zenklusen’21] on Steiner tree by
non-oblivious local search

Non-Oblivious Local Search
e What should local search do?

660000

e 1l/n,w<n

 Define a custom potential function ¢(C) to measure

progress: ®(C) = > scc W(S) - f(IS])
e Approximates true objective: w(C) < ®(C) < aw(C) for
approxma’uon «, so enforce 1 <f(s)<a

@ OOEHEY) @@@@@

e 1/n, <<1/ €< 1/n,

e f(s) should be increasing on s
e a=Inkitryf(s)=Hs=1+%+---+1?
e Inspired by [Traub-Zenklusen’21] on Steiner tree by
non-oblivious local search
e ¢ is called the Rosenthal potential

Width-1 Local Search

e Theorem: width-1 local search with the Rosenthal potential
is an Hy-approximation

Width-1 Local Search

e Theorem: width-1 local search with the Rosenthal potential
is an Hy-approximation
e Proof: Let C* be the optimal solution.

Width-1 Local Search

e Theorem: width-1 local search with the Rosenthal potential
is an Hy-approximation
e Proof: Let C* be the optimal solution.
e Recall that ®(C) = > 5. W(S) - His|.

Width-1 Local Search

e Theorem: width-1 local search with the Rosenthal potential
is an Hy-approximation
e Proof: Let C* be the optimal solution.
e Recall that ®(C) = > 5. W(S) - His|.
e Adding in any S* € C* and pruning does not improve local
search:

S)His:| =D w(S)(Hs| —Hs\s+)) -
SeC

increase in ® from S* savings from pruning S — S\S*

Width-1 Local Search

e Theorem: width-1 local search with the Rosenthal potential
is an Hy-approximation
e Proof: Let C* be the optimal solution.
e Recall that ®(C) = > 5. W(S) - His|.

e Adding in any S* € C* and pruning does not improve local
search:

SMHise| =D, W(S)(His| —Hisis-) -
SeC -
increase in ® from S* savings from pruning S — S\S*

* 1
* His|—His\s+| = \S\S*|+1+ BSE |+2Jr i |5\ > [SNS*|- 5

Width-1 Local Search

e Theorem: width-1 local search with the Rosenthal potential
is an Hy-approximation
e Proof: Let C* be the optimal solution.
e Recall that ®(C) = > 5. W(S) - His|.

e Adding in any S* € C* and pruning does not improve local
search:

SMHise| =D, W(S)(His| —Hisis-) -
SeC -
increase in ® from S* savings from pruning S — S\S*

* 1
* His|—His\s+| = \S\S*|+1+ BSE |+2Jr i |5\ > [SNS*|- 5
= w(S*)H‘S*| > seeW(S)ISNSY - 5

Width-1 Local Search

e Theorem: width-1 local search with the Rosenthal potential
is an Hy-approximation
e Proof: Let C* be the optimal solution.
e Recall that ®(C) = > 5. W(S) - His|.

e Adding in any S* € C* and pruning does not improve local
search:

SMHise| =D, W(S)(His| —Hisis-) -
SeC -
increase in ® from S* savings from pruning S — S\S*

* 1
* Hisj—His\s+| = \S\S*|+1+ BEE |+2+ T+ |s\ > [SNS*|- 5
= W(S")His+| = D5 W(S)ISNST| -

> W(S*)Hgs > ZZW)IS NS*-

S*eC* S*eC* SEC ‘ ‘

=> w(s)) IsnsT-

seC S*eC* ‘

=1

Width-1 Local Search

e Theorem: width-1 local search with the Rosenthal potential
is an Hy-approximation
e Proof: Let C* be the optimal solution.
e Recall that ®(C) = > 5. W(S) - His|.

e Adding in any S* € C* and pruning does not improve local
search:

SMHise| =D, W(S)(His| —Hisis-) -
SeC -
increase in ® from S* savings from pruning S — S\S*

* 1
* Hisj—His\s+| = \S\S*|+1+ BEE |+2+ T+ |s\ > [SNS*|- 5
= W(S")His+| = D5 W(S)ISNST| -

> W(S*)Hgs > ZZW)IS NS*-

S*eC* S*eC* SEC ‘ ‘

=Y w(s) Z\Smsy =ALG

seC S*eC* ‘

=1

Width-1 Local Search

e Theorem: width-1 local search with the Rosenthal potential
is an Hy-approximation
e Proof: Let C* be the optimal solution.
e Recall that ®(C) = > 5. W(S) - His|.
e Adding in any S* € C* and pruning does not improve local
search:

S)His:| =D w(S)(Hs| —Hs\s+)) -

increase in ® from S* Sec savings from pruning S — S\S*

* 1
* Hisj—His\s+| = \S\S*|+1+ BEE |+2+ T+ |s\ > [SNS*|- 5
= W(S")His+| = D5 W(S)ISNST| -

Hi-OPT > > w(S")His: = Y Zw)ISNS*- g ‘

S*eC* S*eC* SEC

=> w(s)) IsnsT- ‘_ALGD

SeC S*eC

=1

Width-2 Local Search

e Theorem: width-2 local search with the Rosenthal potential
is an Hy (1 — ©(1/k?))-approximation

Width-2 Local Search

e Theorem: width-2 local search with the Rosenthal potential
is an Hy (1 — ©(1/k?))-approximation
e Where was the width-1 proof tight?

Width-2 Local Search

e Theorem: width-2 local search with the Rosenthal potential
is an Hy (1 — ©(1/k?))-approximation
e Where was the width-1 proof tight?

— 1 1 1 1
* Hs|—His\s*| = mgsmr t sz T 2 1SNS7 5

Width-2 Local Search

Theorem: width-2 local search with the Rosenthal potential
is an Hy (1 — ©(1/k?))-approximation
Where was the width-1 proof tight?

_ 1 1 1 * 1
Hs —His\s*| = serma Tz + g = 18NS 5
Tight if |[S N S*| = 1. What if |[SNS*| = 2?

Width-2 Local Search

Theorem: width-2 local search with the Rosenthal potential
is an Hy (1 — ©(1/k?))-approximation
Where was the width-1 proof tight?
_ 1 1 1 * 1
Hs —His\s*| = serma Tz + g = 18NS 5
Tight if |[S N S*| = 1. What if |[SNS*| = 2?
o Tt = O(Ee) 2 (L O() -

Width-2 Local Search

Theorem: width-2 local search with the Rosenthal potential
is an Hy (1 — ©(1/k?))-approximation
Where was the width-1 proof tight?

_ 1 1 1 * 1
Hs —His\s*| = serma Tz + g = 18NS 5
Tight if |[S N S*| = 1. What if |[SNS*| = 2?

s st =FtOER) = (L+ ()

More generally, His| — His\s| > (1 + ©(§))) - & as long
as|SNnS* >2

Width-2 Local Search

Theorem: width-2 local search with the Rosenthal potential
is an Hy (1 — ©(1/k?))-approximation
Where was the width-1 proof tight?
Hisi—His\s*| = sterma + sz + 1+ g 2 1SNS7|- 5
Tight if |[S N S*| = 1. What if |[SNS*| = 2?

o st = B +HO>ER) = (L+0(@)) - &
More generally, His) — His\s+| > (1 +©(;g)) - /g as long
as|SNnS* >2
Adding in any S;, S € C* and pruning does not improve
local search:

W(S*)Hs;usy| = ZW (H|5| - H|5\(s;us;)\) :
\—v—’

increase in ® from S* savmgs from pruning S — S\ (S;US)

Width-2 Local Search

Theorem: width-2 local search with the Rosenthal potential
is an Hy (1 — ©(1/k?))-approximation
Where was the width-1 proof tight?

_ 1 1 1 * 1
His| —His\s*| = svsrmz T sz T T 751 = 1SNS™]- 5

Tight if |[S N S*| = 1. What if |[SNS*| = 2?

s sEitE =5 +O>ER) = (L+0(F)) &
More generally, His| — His\s+| > (1 + @(%)) ﬁ as long
as|SNnS* >2
Adding in any S}, S5 € C* and pruning does not improve
local search:

W(S*)Hs;usy| = ZW (H|S| - H|S\(s;us;)\) :
—_———

increase in ® from S*

has (1+@(%)) “often enough”

Width-2 Local Search

Theorem: width-2 local search with the Rosenthal potential
is an Hy (1 — ©(1/k?))-approximation

Where was the width-1 proof tight?

_ 1 1 1 * 1
Hs|—His\s'| = st seme 15 2 ISNS*- 5

Tight if |[S N S*| = 1. What if |[SNS*| = 2?

s sEitE =5 +O>ER) = (L+0(F)) &
More generally, His| — His\s+| > (1 + @(%)) ﬁ as long
as|SNnS* >2
Adding in any S}, S5 € C* and pruning does not improve
local search:

W(S*)Hs;usy| = ZW (H|S| - H|S\(s;us;)\) :
—_———

increase in ® from S*

has (1+@(%)) “often enough”

Repeat analysis from before: ALG < (1 — ©(1/k?))H OPT

Further Improvements

e Can fine-tune function f(s) to get approximation Hy — @(%)

Further Improvements

e Can fine-tune function f(s) to get approximation Hy — @(%)

¢ Width-k local search gives approximation Hy — @('O‘fk)

Further Improvements

e Can fine-tune function f(s) to get approximation Hy — @(%)

¢ Width-k local search gives approximation Hy — @('O‘fk)

e Best possible bounds for non-oblivious local search with
potential function ® = " _-w(S) - f(|S|)

Further Improvements

Can fine-tune function f(s) to get approximation Hy — @(%)

Width-k local search gives approximation Hy — @('O‘fk)

Best possible bounds for non-oblivious local search with
potential function ® = " _-w(S) - f(|S|)

Open: approximation Hy — ©(1)? (Known for unweighted
set cover!)

