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the minimum cut separating s and t for all pairs of vertices
s, t

• Output size
(n

2

)
, so quadratic time is optimal

• Gomory-Hu tree: a weighted tree that encodes all pairwise
mincuts

• Output size O(n), so linear time is optimal
• Given a Gomory-Hu tree, can output all pairs mincuts in

optimal time
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• Gomory and Hu, 1961: Gomory-Hu tree can be solved in
n − 1 calls to s–t mincut

• All-pairs mincut in linear number of s–t mincut calls

• Best bound known for general graphs, even 60 years later!

• Unweighted graphs Õ(mn) time [Bhalgat, Hariharan,
Kavitha, Panigrahi ’08]

• Recent line of work: simple graphs (unweighted, no
parallel edges)

• First subcubic algorithm [Abboud, Krauthgamer,
Trabelsi ’21]

• This work (concurrently [AKT’21]): there is a quadratic time
Gomory-Hu tree algorithm for simple graphs

• Implies near-optimal all-pairs mincut (but not Gomory-Hu
tree)

• This talk: focus on all-pairs mincuts only (no GH tree)
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• Main Idea: spend a single s–t mincut time to compute
many s–t mincuts

• Isolating Cuts procedure [LP’20, AKT’21]: given terminals
T , can compute the t–(T \ t) mincut for all t ∈ T in
O(log |T |) many s–t mincut calls

• When does isolating cuts capture the true s–t mincuts?
• when the s–t mincut is also a s–(T \ s) cut
• when the only terminal on s’s side is s itself
• in other words, s–t mincut should be “unbalanced”
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• Suppose we have the following promise: the s–t mincut
has at most k terminals on s’s side

• Idea: randomly sample terminals at rate 1/k ; with
probability Ω(1/k2), sample s and t and no other terminals
on s’s side

• Recover s–t mincut for all s, t satisfying the above by
repeating O(k2 log n) times =⇒ total running time Õ(k2)
many s–t mincut calls.

• Formally, we use notion of a well-linked set
• If a set of terminals is φ-well-linked, then for any terminals

s, t , the s–t mincut has at most 1/φ terminals on either s’s
or t ’s side

• Think: expander, except with terminals

• Main technical tool: well-linked decomposition (only for
simple graphs!)
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Well-linked Decomposition

• Given a parameter d and terminal set T of vertices of
degree ≥ d , we can partition T into Õ(n/d) groups, each
of which is φ-well-linked for some φ = 1/no(1). Algorithm
takes m1+o(1) time.

• For each partition, compute all-pairs mincut given the
unbalanced guarantee.

• We reduce the number of edges to O(nd) by
Nagamochi-Ibaraki sparsification; we only need to look at
s–t mincuts of size at most, say, 2d

• Assuming linear-time s–t mincut, total running time is
Õ(n/d) ∙ Ô(nd) = Ô(n2).

• For terminals in different partitions, need to look further
into Gomory-Hu tree structure (not in this talk)
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Conclusion

• Near-optimal all-pairs mincut algorithm for simple graphs
(not optimal for Gomory-Hu tree)

• New technical idea: well-linked decomposition
• Open: faster Gomory-Hu tree algorithms?

• Some exciting progress in submission!
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