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Min k-cut problem

@ Given graph G, remove min weight set of edges that splits
G into > k connected components

@ [SV95] Greedy 2-approx
@ [Manl7] (2 — ¢)-approx is NP-hard assuming SSEH

Constant k

| \

o Karger's random edge sampling: exact O(n¢) time

FPT in k (running time f(k)n®)
o Exact is W[1]-hard parameterized by k
@ Approx parameterized by k?

o This talk: 1.9997-approxin 2°K°) . O(n*) time.
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High level idea

@ Follow the greedy 2-approx algorithm of [SV95]

@ If graph does not have a specific structure, then a simple
modification of [SV95] already guarantees (2 — ¢)-approx

@ Separate (2 — €)-approx algorithm that exploits this
structure
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2-approx [SV95]

@ For k — 1 iterations, greedily take the min global cut
@ Min cut that increases # connected components by 1

@ Consider OPT:
|0ST \ <|9S5| < --- < |9S§]

» Z 0S#| = 2- OPT

68* is possible cut
= |Cy| < [0S]]
Either 68; or 9S; is possible cut
= |Cz| = 1053
Foralli € [k —1]: |G| < |0S]|

k—1 k—1
ALG = Y |Ci| < 3 8S7| < 2-OPT
i—1 i=1
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Branching

Recall that |C;| < [0S/| for all i. What about |C;| vs. |0S]|?
Suppose, at some iteration, |C;| > |0S]].

|0ST| must be completely cut. Otherwise, it's a valid cut!

Consider the algorithm’s components so far. The union of
some components is exactly S7.

Idea: guess all subsets of components
Branching factor: 2%, branching depth: k = 2* time
Henceforth, assume |C;| < |0Sj| for all i € [k — 1].



Case |Cj| < |0S]

2-0OPT =} 10S/|
ALG =3 |G|
ALG line below OPT line and Sj line

0S;
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Case |Ci| < |0S]]

2.-OPT =Y, |0S?|
ALG =Y, |G|
ALG line below OPT line and Sj line
Find a gap between ALG and OPT ?

0S;

ICil
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Case |Ci| < |0S]]

ALG <k - |9S3|
= Q(ALG) gap
ALG + Q(ALG) < 20PT

= (2 — ¢)-approx |0S;
0.1k - €|0S7|
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Hard case for greedy

@ No such gap

!

°
@ mincut(G) = |C4| = |0S]| ~ |9S]| for all i
@ We have |0S]| ~ mincut(G) foralli <k — 1.
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Crossing cuts

@ Hard case: all 0S;* are near-mincuts (i <k — 1)

@ Consider the set of near-mincuts of G. Suppose two
near-mincuts cross.

@ min-4-cut(G) < 2(1 + O(¢)) - mincut(G)

@ Greedily take best min-4-cut. Pay (2 + O(e)) - mincut(G) for
3 additional components — (% + O(e)) - mincut(G) cost
per additional component.

@ If we can repeat this Q(k) times, we save Q(OPT)

—> (2 — ¢)-approx.
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Hard case

@ Hard case:

@ All 9S;" are near-mincuts (i <k — 1)
@ No two near-mincuts cross

°
@ Only n®(+<) many (1 + ¢)-near-mincuts
@ Don't cross = forms laminar family

@ Separate FPT (2 — ¢)-approx algorithm.
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Open questions

@ Improved approximation factor, and/or FPT APX hardness
result

@ FPT approximation scheme for min k-cut?



