(2 — €)-approximate minimum k-cut in FPT time
Jason Li

Joint work with Anupam Gupta, Euiwoong Lee

Carnegie Mellon University

January 10, 2018

Min k-cut problem

@ Given graph G, remove min weight set of edges that splits
G into > k connected components

Min k-cut problem

@ Given graph G, remove min weight set of edges that splits
G into > k connected components

Min k-cut problem

@ Given graph G, remove min weight set of edges that splits
G into > k connected components

@ [SV95] Greedy 2-approx

Min k-cut problem

@ Given graph G, remove min weight set of edges that splits
G into > k connected components

@ [SV95] Greedy 2-approx

@ [Manl7] (2 — ¢)-approx is NP-hard assuming SSEH

Min k-cut problem

@ Given graph G, remove min weight set of edges that splits
G into > k connected components

@ [SV95] Greedy 2-approx
@ [Manl7] (2 — ¢)-approx is NP-hard assuming SSEH

Constant k

Min k-cut problem

@ Given graph G, remove min weight set of edges that splits
G into > k connected components

@ [SV95] Greedy 2-approx
@ [Manl7] (2 — ¢)-approx is NP-hard assuming SSEH

Constant k

o Karger's random edge sampling: exact O(n¢) time

Min k-cut problem

@ Given graph G, remove min weight set of edges that splits
G into > k connected components

@ [SV95] Greedy 2-approx
@ [Manl7] (2 — ¢)-approx is NP-hard assuming SSEH

Constant k

| \

o Karger's random edge sampling: exact O(n¢) time

A\

FPT in k (running time f(k)n®)

A\

Min k-cut problem

@ Given graph G, remove min weight set of edges that splits
G into > k connected components

@ [SV95] Greedy 2-approx
@ [Manl7] (2 — ¢)-approx is NP-hard assuming SSEH

Constant k

| \

o Karger's random edge sampling: exact O(n¢) time

A\

FPT in k (running time f(k)n®)

o Exact is W[1]-hard parameterized by k

A\

Min k-cut problem

@ Given graph G, remove min weight set of edges that splits
G into > k connected components

@ [SV95] Greedy 2-approx
@ [Manl7] (2 — ¢)-approx is NP-hard assuming SSEH

Constant k

| \

o Karger's random edge sampling: exact O(n¢) time

A\

FPT in k (running time f(k)n®)

o Exact is W[1]-hard parameterized by k

o Approx parameterized by k?

A\

Min k-cut problem

@ Given graph G, remove min weight set of edges that splits
G into > k connected components

@ [SV95] Greedy 2-approx
@ [Manl7] (2 — ¢)-approx is NP-hard assuming SSEH

Constant k

| \

o Karger's random edge sampling: exact O(n¢) time

FPT in k (running time f(k)n®)
o Exact is W[1]-hard parameterized by k
@ Approx parameterized by k?

o This talk: 1.9997-approxin 2°K°) . O(n*) time.

A\

A\

High level idea

@ Follow the greedy 2-approx algorithm of [SV95]

High level idea

@ Follow the greedy 2-approx algorithm of [SV95]

@ If graph does not have a specific structure, then a simple
modification of [SV95] already guarantees (2 — ¢)-approx

High level idea

@ Follow the greedy 2-approx algorithm of [SV95]

@ If graph does not have a specific structure, then a simple
modification of [SV95] already guarantees (2 — ¢)-approx

@ Separate (2 — €)-approx algorithm that exploits this
structure

2-approx [SV95]

@ For k — 1 iterations, greedily take the min global cut

2-approx [SV95]

@ For k — 1 iterations, greedily take the min global cut
@ Min cut that increases # connected components by 1

2-approx [SV95]

@ For k — 1 iterations, greedily take the min global cut
@ Min cut that increases # connected components by 1
@ Consider OPT:

\ >
57

|0S1] < |0S3] < --- < [0S¢]

2-approx [SV95]

@ For k — 1 iterations, greedily take the min global cut
@ Min cut that increases # connected components by 1

@ Consider OPT:
0S]] < [0S5] < -+ < [0S(]

k
» 3> 10S;| = 2 OPT
i=1

2-approx [SV95]

@ For k — 1 iterations, greedily take the min global cut
@ Min cut that increases # connected components by 1

@ Consider OPT:
0S7| < [0S5| < --- < |0S§|
k
Z |0S]| = 2-OPT

2-approx [SV95]

@ For k — 1 iterations, greedily take the min global cut
@ Min cut that increases # connected components by 1

@ Consider OPT:
0S]] < [0S5] < -+ < [0S(]

k
» 3057 =2 OPT
i=1

0S] is possible cut
= |Ca| < [0S]]

2-approx [SV95]

@ For k — 1 iterations, greedily take the min global cut
@ Min cut that increases # connected components by 1

@ Consider OPT:
0S]] < [0S5] < -+ < [0S(]

k
» 3057 =2 OPT
i=1

0S] is possible cut
= |Ca| < [0S]]

2-approx [SV95]

@ For k — 1 iterations, greedily take the min global cut
@ Min cut that increases # connected components by 1

@ Consider OPT:
0S]] < [0S5] < -+ < [0S(]

k
» 3057 =2 OPT
i=1

0S] is possible cut
= |Cq| < [0S]]

Either 9S] or 9S; is possible cut
= |C2| < [0S3]

2-approx [SV95]

@ For k — 1 iterations, greedily take the min global cut
@ Min cut that increases # connected components by 1

@ Consider OPT:
0S]] < [0S5] < -+ < [0S(]

k
» 3057 =2 OPT
i=1

0S] is possible cut
= |Cq| < [0S]]
Either 9S] or 9S; is possible cut
= |C2| < [0S3]
Foralli € [k —1]: |Cj| < [9S]'|

2-approx [SV95]

@ For k — 1 iterations, greedily take the min global cut
@ Min cut that increases # connected components by 1

@ Consider OPT:
|0ST \ <|9S5| < --- < |9S§]

» Z 0S#| = 2- OPT

68* is possible cut
= |Cy| < [0S]]
Either 68; or 9S; is possible cut
= |Cz| = 1053
Foralli € [k —1]: |G| < |0S]|

k—1 k—1
ALG = Y |Ci| < 3 8S7| < 2-OPT
i—1 i=1

Branching

@ Recall that |C;j| < |9S/| for all i. What about |Cj| vs. |0S}|?

Branching

@ Recall that |C;j| < |9S/| for all i. What about |Cj| vs. |0S}|?
@ Suppose, at some iteration, |C;j| > |0S;|.

Branching

@ Recall that |C;j| < |9S/| for all i. What about |Cj| vs. |0S}|?
@ Suppose, at some iteration, |C;j| > |0S;|.

RSl

Branching

@ Recall that |C;j| < |9S/| for all i. What about |Cj| vs. |0S}|?
@ Suppose, at some iteration, |C;j| > |0S;|.

e

@ |0S]| must be completely cut. Otherwise, it's a valid cut!

Branching

@ Recall that |C;| < [9S]| for all i. What about |Ci| vs. |0S]|?
@ Suppose, at some iteration, |C;| > |0S]|.

@ |0S]| must be completely cut. Otherwise, it’s a valid cut!

Branching

Recall that |C;| < [0S/| for all i. What about |C;| vs. |0S]|?
Suppose, at some iteration, |C;| > |0S]].

|0ST| must be completely cut. Otherwise, it's a valid cut!

Consider the algorithm’s components so far. The union of
some components is exactly S7.

Branching

Recall that |C;| < [0S/| for all i. What about |C;| vs. |0S]|?
Suppose, at some iteration, |C;| > |0S]].

|0ST| must be completely cut. Otherwise, it's a valid cut!

Consider the algorithm’s components so far. The union of
some components is exactly S7.

Idea: guess all subsets of components

Branching

Recall that |C;| < [0S/| for all i. What about |C;| vs. |0S]|?
Suppose, at some iteration, |C;| > |0S]].

|0ST| must be completely cut. Otherwise, it's a valid cut!

Consider the algorithm’s components so far. The union of
some components is exactly S7.

Idea: guess all subsets of components
Branching factor: 2%, branching depth: k = 2* time

Branching

Recall that |C;| < [0S/| for all i. What about |C;| vs. |0S]|?
Suppose, at some iteration, |C;| > |0S]].

|0ST| must be completely cut. Otherwise, it's a valid cut!

Consider the algorithm’s components so far. The union of
some components is exactly S7.

Idea: guess all subsets of components
Branching factor: 2%, branching depth: k = 2* time
Henceforth, assume |C;| < |0Sj| for all i € [k — 1].

Case |Cj| < |0S]

2-0OPT =} 10S/|
ALG =3 |G|
ALG line below OPT line and Sj line

0S;

05111053

|C‘1 C2| ‘CI|

Case |Ci| < |0S]]

2.-OPT =Y, |0S?|
ALG =Y, |G|
ALG line below OPT line and Sj line
Find a gap between ALG and OPT ?

0S;

ICil

Case |Ci| < |0S]]

Case |Ci| < |0S]]

(1+¢€)|0S]| =mmmmmmmmmcaeagec g aaaaan
|OST} 7]
(1= €)|8S]| ==prmmmmmmmenn- L/~

Case |Ci| < |0S]]

Case |Ci| < |0S]]

Case |Ci| < |0S]]

ALG <k - |9S3|
= Q(ALG) gap

Case |Ci| < |0S]]

ALG <k - |9S3|
= Q(ALG) gap
ALG + Q(ALG) < 20PT

= (2 — ¢)-approx |0S;
0.1k - €|0S7|

Hard case for greedy

@ No such gap

Hard case for greedy

@ No such gap

!

Hard case for greedy

@ No such gap

!

°
@ mincut(G) = |C4| = |0S]| ~ |9S]| for all i

Hard case for greedy

@ No such gap

!

°
@ mincut(G) = |C4| = |0S]| ~ |9S]| for all i
@ We have |0S]| ~ mincut(G) foralli <k — 1.

Crossing cuts

@ Hard case: all 0S;* are near-mincuts (i <k — 1)

Crossing cuts

@ Hard case: all 0S;* are near-mincuts (i <k — 1)

@ Consider the set of near-mincuts of G. Suppose two
near-mincuts cross.

Crossing cuts

@ Hard case: all 0S;* are near-mincuts (i <k — 1)

@ Consider the set of near-mincuts of G. Suppose two
near-mincuts cross.

@ min-4-cut(G) < 2(1 + O(¢)) - mincut(G)

Crossing cuts

@ Hard case: all 0S;* are near-mincuts (i <k — 1)

@ Consider the set of near-mincuts of G. Suppose two
near-mincuts cross.

@ min-4-cut(G) < 2(1 + O(¢)) - mincut(G)

@ Greedily take best min-4-cut. Pay (2 + O(e)) - mincut(G) for
3 additional components — (% + O(e)) - mincut(G) cost
per additional component.

Crossing cuts

@ Hard case: all 0S;* are near-mincuts (i <k — 1)

@ Consider the set of near-mincuts of G. Suppose two
near-mincuts cross.

@ min-4-cut(G) < 2(1 + O(¢)) - mincut(G)

@ Greedily take best min-4-cut. Pay (2 + O(e)) - mincut(G) for
3 additional components — (% + O(e)) - mincut(G) cost
per additional component.

@ If we can repeat this Q(k) times, we save Q(OPT)

—> (2 — ¢)-approx.

Hard case

@ Hard case:

Hard case

@ Hard case:
@ All 9S;" are near-mincuts (i <k — 1)

Hard case

@ Hard case:

@ All 9S;" are near-mincuts (i <k — 1)
@ No two near-mincuts cross

Hard case

@ Hard case:

@ All 9S;" are near-mincuts (i <k — 1)
@ No two near-mincuts cross

Hard case

@ Hard case:

@ All 9S;" are near-mincuts (i <k — 1)
@ No two near-mincuts cross

°
@ Only n®(+<) many (1 + ¢)-near-mincuts

Hard case

@ Hard case:

@ All 9S;" are near-mincuts (i <k — 1)
@ No two near-mincuts cross

°
@ Only n®(+<) many (1 + ¢)-near-mincuts
@ Don't cross = forms laminar family

Hard case

@ Hard case:

@ All 9S;" are near-mincuts (i <k — 1)
@ No two near-mincuts cross

°
@ Only n®(+<) many (1 + ¢)-near-mincuts
@ Don't cross = forms laminar family

Hard case

@ Hard case:

@ All 9S;" are near-mincuts (i <k — 1)
@ No two near-mincuts cross

°
@ Only n®(+<) many (1 + ¢)-near-mincuts
@ Don't cross = forms laminar family

@ Separate FPT (2 — ¢)-approx algorithm.

Open questions

@ Improved approximation factor, and/or FPT APX hardness
result

Open questions

@ Improved approximation factor, and/or FPT APX hardness
result

@ FPT approximation scheme for min k-cut?

