$(2 - \epsilon)$ -approximate minimum *k*-cut in FPT time Jason Li

Joint work with Anupam Gupta, Euiwoong Lee

Carnegie Mellon University

January 10, 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 Given graph G, remove min weight set of edges that splits G into ≥ k connected components

 Given graph G, remove min weight set of edges that splits G into ≥ k connected components

 Given graph G, remove min weight set of edges that splits G into ≥ k connected components

General k

SV95] Greedy 2-approx

 Given graph G, remove min weight set of edges that splits G into ≥ k connected components

General k

- SV95] Greedy 2-approx
- [Man17] (2ϵ) -approx is NP-hard assuming SSEH

 Given graph G, remove min weight set of edges that splits G into ≥ k connected components

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

General k

- [SV95] Greedy 2-approx
- [Man17] (2ϵ) -approx is NP-hard assuming SSEH

Constant k

 Given graph G, remove min weight set of edges that splits G into ≥ k connected components

General k

- [SV95] Greedy 2-approx
- [Man17] (2ϵ) -approx is NP-hard assuming SSEH

Constant k

• Karger's random edge sampling: exact $O(n^{2k})$ time

 Given graph G, remove min weight set of edges that splits G into ≥ k connected components

General k

- SV95] Greedy 2-approx
- [Man17] (2ϵ) -approx is NP-hard assuming SSEH

Constant k

• Karger's random edge sampling: exact $O(n^{2k})$ time

FPT in k (running time $f(k)n^{O(1)}$)

 Given graph G, remove min weight set of edges that splits G into ≥ k connected components

General k

- SV95] Greedy 2-approx
- [Man17] (2ϵ) -approx is NP-hard assuming SSEH

Constant k

• Karger's random edge sampling: exact $O(n^{2k})$ time

FPT in k (running time $f(k)n^{O(1)}$)

• Exact is W[1]-hard parameterized by k

 Given graph G, remove min weight set of edges that splits G into ≥ k connected components

General k

- SV95] Greedy 2-approx
- [Man17] (2ϵ) -approx is NP-hard assuming SSEH

Constant k

• Karger's random edge sampling: exact $O(n^{2k})$ time

FPT in k (running time $f(k)n^{O(1)}$)

- Exact is W[1]-hard parameterized by k
- Approx parameterized by k?

 Given graph G, remove min weight set of edges that splits G into ≥ k connected components

General k

- SV95] Greedy 2-approx
- [Man17] (2ϵ) -approx is NP-hard assuming SSEH

Constant k

• Karger's random edge sampling: exact $O(n^{2k})$ time

FPT in k (running time $f(k)n^{O(1)}$)

- Exact is W[1]-hard parameterized by k
- Approx parameterized by k?
- This talk: 1.9997-approx in $2^{O(k^6)} \cdot \tilde{O}(n^4)$ time.

• Follow the greedy 2-approx algorithm of [SV95]

- Follow the greedy 2-approx algorithm of [SV95]
- If graph does not have a specific structure, then a simple modification of [SV95] already guarantees (2 – ε)-approx

- Follow the greedy 2-approx algorithm of [SV95]
- If graph does not have a specific structure, then a simple modification of [SV95] already guarantees (2 – ε)-approx

▲□▶▲□▶▲□▶▲□▶ □ クタペ

Separate (2 – ε)-approx algorithm that exploits this structure

• For k - 1 iterations, greedily take the min global cut

- For k 1 iterations, greedily take the min global cut
- Min cut that increases # connected components by 1

- For k 1 iterations, greedily take the min global cut
- Min cut that increases # connected components by 1
- Consider OPT:

 $|\partial S_1^*| \le |\partial S_2^*| \le \dots \le |\partial S_k^*|$

- For k 1 iterations, greedily take the min global cut
- Min cut that increases # connected components by 1
- Consider OPT:

$$|\partial S_1^*| \le |\partial S_2^*| \le \dots \le |\partial S_k^*|$$

 $\sum_{i=1}^k |\partial S_i^*| = 2 \cdot OPT$

- For k 1 iterations, greedily take the min global cut
- Min cut that increases # connected components by 1
- Consider OPT:

$$\partial S_1^*| \le |\partial S_2^*| \le \dots \le |\partial S_k^*|$$

 $\sum_{i=1}^k |\partial S_i^*| = 2 \cdot OPT$

- For k 1 iterations, greedily take the min global cut
- Min cut that increases # connected components by 1
- Consider OPT:

$$\begin{split} |\partial S_1^*| &\leq |\partial S_2^*| \leq \cdots \leq |\partial S_k^*| \\ &\sum_{i=1}^k |\partial S_i^*| = 2 \cdot OPT \\ &\partial S_1^* \text{ is possible cut} \\ &\implies |C_1| \leq |\partial S_1^*| \end{split}$$

- For k 1 iterations, greedily take the min global cut
- Min cut that increases # connected components by 1
- Consider OPT:

$$\begin{split} |\partial S_1^*| &\leq |\partial S_2^*| \leq \cdots \leq |\partial S_k^*| \\ &\sum_{i=1}^k |\partial S_i^*| = 2 \cdot OPT \\ &\partial S_1^* \text{ is possible cut} \\ &\implies |C_1| \leq |\partial S_1^*| \end{split}$$

- For k 1 iterations, greedily take the min global cut
- Min cut that increases # connected components by 1
- Consider OPT:

$$\begin{split} |\partial S_1^*| &\leq |\partial S_2^*| \leq \cdots \leq |\partial S_k^*| \\ \sum_{i=1}^k |\partial S_i^*| &= 2 \cdot OPT \\ \partial S_1^* \text{ is possible cut} \\ &\Longrightarrow |C_1| \leq |\partial S_1^*| \\ \text{Either } \partial S_1^* \text{ or } \partial S_2^* \text{ is possible cut} \\ &\Longrightarrow |C_2| \leq |\partial S_2^*| \end{split}$$

- For k 1 iterations, greedily take the min global cut
- Min cut that increases # connected components by 1
- Consider OPT:

- For k 1 iterations, greedily take the min global cut
- Min cut that increases # connected components by 1
- Consider OPT:

• Recall that $|C_i| \le |\partial S_i^*|$ for all *i*. What about $|C_i|$ vs. $|\partial S_1^*|$?

• Recall that $|C_i| \le |\partial S_i^*|$ for all *i*. What about $|C_i|$ vs. $|\partial S_1^*|$?

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

• Suppose, at some iteration, $|C_i| > |\partial S_1^*|$.

• Recall that $|C_i| \le |\partial S_i^*|$ for all *i*. What about $|C_i|$ vs. $|\partial S_1^*|$?

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

• Suppose, at some iteration, $|C_i| > |\partial S_1^*|$.

- Recall that $|C_i| \le |\partial S_i^*|$ for all *i*. What about $|C_i|$ vs. $|\partial S_1^*|$?
- Suppose, at some iteration, $|C_i| > |\partial S_1^*|$.

• $|\partial S_1^*|$ must be completely cut. Otherwise, it's a valid cut!

- Recall that $|C_i| \le |\partial S_i^*|$ for all *i*. What about $|C_i|$ vs. $|\partial S_1^*|$?
- Suppose, at some iteration, $|C_i| > |\partial S_1^*|$.

• $|\partial S_1^*|$ must be completely cut. Otherwise, it's a valid cut!

- Recall that $|C_i| \le |\partial S_i^*|$ for all *i*. What about $|C_i|$ vs. $|\partial S_1^*|$?
- Suppose, at some iteration, $|C_i| > |\partial S_1^*|$.

- $|\partial S_1^*|$ must be completely cut. Otherwise, it's a valid cut!
- Consider the algorithm's components so far. The union of some components is exactly S₁^{*}.

- Recall that $|C_i| \le |\partial S_i^*|$ for all *i*. What about $|C_i|$ vs. $|\partial S_1^*|$?
- Suppose, at some iteration, $|C_i| > |\partial S_1^*|$.

- $|\partial S_1^*|$ must be completely cut. Otherwise, it's a valid cut!
- Consider the algorithm's components so far. The union of some components is exactly S^{*}₁.
- Idea: guess all subsets of components

- Recall that $|C_i| \le |\partial S_i^*|$ for all *i*. What about $|C_i|$ vs. $|\partial S_1^*|$?
- Suppose, at some iteration, $|C_i| > |\partial S_1^*|$.

- $|\partial S_1^*|$ must be completely cut. Otherwise, it's a valid cut!
- Consider the algorithm's components so far. The union of some components is exactly S^{*}₁.
- Idea: guess all subsets of components
- Branching factor: 2^k , branching depth: $k \implies 2^{k^2}$ time

- Recall that $|C_i| \le |\partial S_i^*|$ for all *i*. What about $|C_i|$ vs. $|\partial S_1^*|$?
- Suppose, at some iteration, $|C_i| > |\partial S_1^*|$.

- ٩
- $|\partial S_1^*|$ must be completely cut. Otherwise, it's a valid cut!
- Consider the algorithm's components so far. The union of some components is exactly S^{*}₁.
- Idea: guess all subsets of components
- Branching factor: 2^k , branching depth: $k \implies 2^{k^2}$ time
- Henceforth, assume $|C_i| \le |\partial S_1^*|$ for all $i \in [k-1]$.

Case $|C_i| \leq |\partial S_1^*|$

うくで

Case $|C_i| \leq |\partial S_1^*|$

$Case |C_i| \le |\overline{\partial S_1^*}|$

$\mathsf{Case} |C_i| \leq |\overline{\partial S_1^*}|$

୍ରର୍ତ

$\mathsf{Case} |C_i| \leq |\overline{\partial S_1^*}|$

$\mathsf{Case} |C_i| \leq |\overline{\partial S_1^*}|$

Case $|C_i| \leq |\partial \overline{S_1^*}|$

Case $|C_i| \leq |\partial S_1^*|$

No such gap

No such gap

No such gap

No such gap

• We have $|\partial S_i^*| \approx \text{mincut}(G)$ for all $i \leq k - 1$.

• Hard case: all ∂S_i^* are near-mincuts $(i \le k - 1)$

- Hard case: all ∂S_i^* are near-mincuts $(i \le k 1)$
- Consider the set of near-mincuts of *G*. Suppose two near-mincuts cross.

- Hard case: all ∂S_i^* are near-mincuts $(i \le k 1)$
- Consider the set of near-mincuts of *G*. Suppose two near-mincuts cross.

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

• min-4-cut(G) $\leq 2(1 + O(\epsilon)) \cdot mincut(G)$

- Hard case: all ∂S_i^* are near-mincuts $(i \le k 1)$
- Consider the set of near-mincuts of G. Suppose two near-mincuts cross.

- min-4-cut(G) $\leq 2(1 + O(\epsilon)) \cdot mincut(G)$
- Greedily take best min-4-cut. Pay (2 + O(ϵ)) · mincut(G) for 3 additional components ⇒ (²/₃ + O(ϵ)) · mincut(G) cost per additional component.

- Hard case: all ∂S_i^* are near-mincuts $(i \le k 1)$
- Consider the set of near-mincuts of G. Suppose two near-mincuts cross.

- min-4-cut(G) $\leq 2(1 + O(\epsilon)) \cdot \text{mincut}(G)$
- Greedily take best min-4-cut. Pay (2 + O(ϵ)) · mincut(G) for 3 additional components ⇒ (²/₃ + O(ϵ)) · mincut(G) cost per additional component.
- If we can repeat this $\Omega(k)$ times, we save $\Omega(OPT) \implies (2 \epsilon)$ -approx.

• Hard case:

▲□▶▲@▶▲≣▶▲≣▶ ■ めんの

- Hard case:
 - All ∂S_i^* are near-mincuts $(i \le k 1)$

- Hard case:
 - All ∂S_i^* are near-mincuts $(i \le k 1)$

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

No two near-mincuts cross

• Hard case:

- All ∂S_i^* are near-mincuts $(i \le k 1)$
- No two near-mincuts cross

Hard case:

- All ∂S_i^* are near-mincuts $(i \le k 1)$
- No two near-mincuts cross

• Only $n^{O(1+\epsilon)}$ many $(1+\epsilon)$ -near-mincuts

Hard case:

- All ∂S_i^* are near-mincuts $(i \le k 1)$
- No two near-mincuts cross

• Only $n^{O(1+\epsilon)}$ many $(1+\epsilon)$ -near-mincuts

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

 Don't cross → forms laminar family

Hard case:

- All ∂S_i^* are near-mincuts $(i \le k 1)$
- No two near-mincuts cross

• Only $n^{O(1+\epsilon)}$ many $(1+\epsilon)$ -near-mincuts

▲□▶▲□▶▲□▶▲□▶ □ クタペ

 Don't cross → forms laminar family

Hard case:

- All ∂S_i^* are near-mincuts $(i \le k 1)$
- No two near-mincuts cross

- Only $n^{O(1+\epsilon)}$ many $(1+\epsilon)$ -near-mincuts
- Don't cross \implies forms laminar family
- Separate FPT (2ϵ) -approx algorithm.

Improved approximation factor, and/or FPT APX hardness result

◆□▶ ◆□▶ ★ □▶ ★ □ ▶ → □ ● の < @

 Improved approximation factor, and/or FPT APX hardness result

◆□▶ ◆□▶ ★ □▶ ★ □ ▶ → □ ● の < @

• FPT approximation scheme for min k-cut?