
(2− ε)-approximate minimum k -cut in FPT time
Jason Li

Joint work with Anupam Gupta, Euiwoong Lee

Carnegie Mellon University

January 10, 2018

Min k -cut problem

Given graph G, remove min weight set of edges that splits
G into ≥ k connected components

Min k -cut problem

Given graph G, remove min weight set of edges that splits
G into ≥ k connected components

General k

Min k -cut problem

Given graph G, remove min weight set of edges that splits
G into ≥ k connected components

General k

[SV95] Greedy 2-approx

Min k -cut problem

Given graph G, remove min weight set of edges that splits
G into ≥ k connected components

General k

[SV95] Greedy 2-approx

[Man17] (2 − ε)-approx is NP-hard assuming SSEH

Min k -cut problem

Given graph G, remove min weight set of edges that splits
G into ≥ k connected components

General k

[SV95] Greedy 2-approx

[Man17] (2 − ε)-approx is NP-hard assuming SSEH

Constant k

Min k -cut problem

Given graph G, remove min weight set of edges that splits
G into ≥ k connected components

General k

[SV95] Greedy 2-approx

[Man17] (2 − ε)-approx is NP-hard assuming SSEH

Constant k

Karger’s random edge sampling: exact O(n2k) time

Min k -cut problem

Given graph G, remove min weight set of edges that splits
G into ≥ k connected components

General k

[SV95] Greedy 2-approx

[Man17] (2 − ε)-approx is NP-hard assuming SSEH

Constant k

Karger’s random edge sampling: exact O(n2k) time

FPT in k (running time f (k)nO(1))

Min k -cut problem

Given graph G, remove min weight set of edges that splits
G into ≥ k connected components

General k

[SV95] Greedy 2-approx

[Man17] (2 − ε)-approx is NP-hard assuming SSEH

Constant k

Karger’s random edge sampling: exact O(n2k) time

FPT in k (running time f (k)nO(1))

Exact is W[1]-hard parameterized by k

Min k -cut problem

Given graph G, remove min weight set of edges that splits
G into ≥ k connected components

General k

[SV95] Greedy 2-approx

[Man17] (2 − ε)-approx is NP-hard assuming SSEH

Constant k

Karger’s random edge sampling: exact O(n2k) time

FPT in k (running time f (k)nO(1))

Exact is W[1]-hard parameterized by k

Approx parameterized by k?

Min k -cut problem

Given graph G, remove min weight set of edges that splits
G into ≥ k connected components

General k

[SV95] Greedy 2-approx

[Man17] (2 − ε)-approx is NP-hard assuming SSEH

Constant k

Karger’s random edge sampling: exact O(n2k) time

FPT in k (running time f (k)nO(1))

Exact is W[1]-hard parameterized by k

Approx parameterized by k?

This talk: 1.9997-approx in 2O(k6) ∙ Õ(n4) time.

High level idea

Follow the greedy 2-approx algorithm of [SV95]

High level idea

Follow the greedy 2-approx algorithm of [SV95]

If graph does not have a specific structure, then a simple
modification of [SV95] already guarantees (2 − ε)-approx

High level idea

Follow the greedy 2-approx algorithm of [SV95]

If graph does not have a specific structure, then a simple
modification of [SV95] already guarantees (2 − ε)-approx

Separate (2 − ε)-approx algorithm that exploits this
structure

2-approx [SV95]

For k − 1 iterations, greedily take the min global cut

2-approx [SV95]

For k − 1 iterations, greedily take the min global cut

Min cut that increases # connected components by 1

2-approx [SV95]

For k − 1 iterations, greedily take the min global cut

Min cut that increases # connected components by 1

Consider OPT:

S∗
1

S∗
2S∗

3

S∗
4

S∗
5 S∗

6

|∂S∗
1| ≤ |∂S∗

2| ≤ ∙ ∙ ∙ ≤ |∂S∗
k |

2-approx [SV95]

For k − 1 iterations, greedily take the min global cut

Min cut that increases # connected components by 1

Consider OPT:

S∗
1

S∗
2S∗

3

S∗
4

S∗
5 S∗

6

|∂S∗
1| ≤ |∂S∗

2| ≤ ∙ ∙ ∙ ≤ |∂S∗
k |

k∑

i=1
|∂S∗

i | = 2 ∙ OPT

2-approx [SV95]

For k − 1 iterations, greedily take the min global cut

Min cut that increases # connected components by 1

Consider OPT:

S∗
1

|∂S∗
1| ≤ |∂S∗

2| ≤ ∙ ∙ ∙ ≤ |∂S∗
k |

k∑

i=1
|∂S∗

i | = 2 ∙ OPT

2-approx [SV95]

For k − 1 iterations, greedily take the min global cut

Min cut that increases # connected components by 1

Consider OPT:

S∗
1C1

|∂S∗
1| ≤ |∂S∗

2| ≤ ∙ ∙ ∙ ≤ |∂S∗
k |

k∑

i=1
|∂S∗

i | = 2 ∙ OPT

∂S∗
1 is possible cut

=⇒ |C1| ≤ |∂S∗
1|

2-approx [SV95]

For k − 1 iterations, greedily take the min global cut

Min cut that increases # connected components by 1

Consider OPT:

S∗
1

S∗
2

C1

|∂S∗
1| ≤ |∂S∗

2| ≤ ∙ ∙ ∙ ≤ |∂S∗
k |

k∑

i=1
|∂S∗

i | = 2 ∙ OPT

∂S∗
1 is possible cut

=⇒ |C1| ≤ |∂S∗
1|

2-approx [SV95]

For k − 1 iterations, greedily take the min global cut

Min cut that increases # connected components by 1

Consider OPT:

S∗
1

S∗
2

C1

C2

|∂S∗
1| ≤ |∂S∗

2| ≤ ∙ ∙ ∙ ≤ |∂S∗
k |

k∑

i=1
|∂S∗

i | = 2 ∙ OPT

∂S∗
1 is possible cut

=⇒ |C1| ≤ |∂S∗
1|

Either ∂S∗
1 or ∂S∗

2 is possible cut
=⇒ |C2| ≤ |∂S∗

2|

2-approx [SV95]

For k − 1 iterations, greedily take the min global cut

Min cut that increases # connected components by 1

Consider OPT:

S∗
1

S∗
2

C1

C2

|∂S∗
1| ≤ |∂S∗

2| ≤ ∙ ∙ ∙ ≤ |∂S∗
k |

k∑

i=1
|∂S∗

i | = 2 ∙ OPT

∂S∗
1 is possible cut

=⇒ |C1| ≤ |∂S∗
1|

Either ∂S∗
1 or ∂S∗

2 is possible cut
=⇒ |C2| ≤ |∂S∗

2|

For all i ∈ [k − 1]: |Ci | ≤ |∂S∗
i |

2-approx [SV95]

For k − 1 iterations, greedily take the min global cut

Min cut that increases # connected components by 1

Consider OPT:

S∗
1

S∗
2

C1

C2

|∂S∗
1| ≤ |∂S∗

2| ≤ ∙ ∙ ∙ ≤ |∂S∗
k |

k∑

i=1
|∂S∗

i | = 2 ∙ OPT

∂S∗
1 is possible cut

=⇒ |C1| ≤ |∂S∗
1|

Either ∂S∗
1 or ∂S∗

2 is possible cut
=⇒ |C2| ≤ |∂S∗

2|

For all i ∈ [k − 1]: |Ci | ≤ |∂S∗
i |

ALG =
k−1∑

i−1
|Ci | ≤

k−1∑

i=1
|∂S∗

i | ≤ 2 ∙ OPT

Branching

Recall that |Ci | ≤ |∂S∗
i | for all i . What about |Ci | vs. |∂S∗

1|?

Branching

Recall that |Ci | ≤ |∂S∗
i | for all i . What about |Ci | vs. |∂S∗

1|?

Suppose, at some iteration, |Ci | > |∂S∗
1|.

Branching

Recall that |Ci | ≤ |∂S∗
i | for all i . What about |Ci | vs. |∂S∗

1|?

Suppose, at some iteration, |Ci | > |∂S∗
1|.

S∗
1

S∗
2S∗

3

S∗
4

S∗
5 S∗

6

Branching

Recall that |Ci | ≤ |∂S∗
i | for all i . What about |Ci | vs. |∂S∗

1|?

Suppose, at some iteration, |Ci | > |∂S∗
1|.

S∗
1

S∗
2S∗

3

S∗
4

S∗
5 S∗

6

|∂S∗
1| must be completely cut. Otherwise, it’s a valid cut!

Branching

Recall that |Ci | ≤ |∂S∗
i | for all i . What about |Ci | vs. |∂S∗

1|?

Suppose, at some iteration, |Ci | > |∂S∗
1|.

S∗
1

S∗
2S∗

3

S∗
4

S∗
5 S∗

6

|∂S∗
1| must be completely cut. Otherwise, it’s a valid cut!

Branching

Recall that |Ci | ≤ |∂S∗
i | for all i . What about |Ci | vs. |∂S∗

1|?

Suppose, at some iteration, |Ci | > |∂S∗
1|.

S∗
1

S∗
2S∗

3

S∗
4

S∗
5 S∗

6

|∂S∗
1| must be completely cut. Otherwise, it’s a valid cut!

Consider the algorithm’s components so far. The union of
some components is exactly S∗

1.

Branching

Recall that |Ci | ≤ |∂S∗
i | for all i . What about |Ci | vs. |∂S∗

1|?

Suppose, at some iteration, |Ci | > |∂S∗
1|.

S∗
1

S∗
2S∗

3

S∗
4

S∗
5 S∗

6

|∂S∗
1| must be completely cut. Otherwise, it’s a valid cut!

Consider the algorithm’s components so far. The union of
some components is exactly S∗

1.

Idea: guess all subsets of components

Branching

Recall that |Ci | ≤ |∂S∗
i | for all i . What about |Ci | vs. |∂S∗

1|?

Suppose, at some iteration, |Ci | > |∂S∗
1|.

S∗
1

S∗
2S∗

3

S∗
4

S∗
5 S∗

6

|∂S∗
1| must be completely cut. Otherwise, it’s a valid cut!

Consider the algorithm’s components so far. The union of
some components is exactly S∗

1.

Idea: guess all subsets of components

Branching factor: 2k , branching depth: k =⇒ 2k2
time

Branching

Recall that |Ci | ≤ |∂S∗
i | for all i . What about |Ci | vs. |∂S∗

1|?

Suppose, at some iteration, |Ci | > |∂S∗
1|.

S∗
1

S∗
2S∗

3

S∗
4

S∗
5 S∗

6

|∂S∗
1| must be completely cut. Otherwise, it’s a valid cut!

Consider the algorithm’s components so far. The union of
some components is exactly S∗

1.

Idea: guess all subsets of components

Branching factor: 2k , branching depth: k =⇒ 2k2
time

Henceforth, assume |Ci | ≤ |∂S∗
1| for all i ∈ [k − 1].

Case |Ci | ≤ |∂S∗
1|

2 ∙ OPT =
∑

i |∂S∗
i |

ALG =
∑

i |Ci |

ALG line below OPT line and S∗
1 line

|∂S∗
i |

|Ci |

|∂S∗
1|

|C1|

|∂S∗
2|

|C2|

1 2 k − 1

Case |Ci | ≤ |∂S∗
1|

2 ∙ OPT =
∑

i |∂S∗
i |

ALG =
∑

i |Ci |

ALG line below OPT line and S∗
1 line

Find a gap between ALG and OPT ?

|∂S∗
i |

|Ci |

1 2 k − 1

Case |Ci | ≤ |∂S∗
1|

(1 + ε)|∂S∗
1|
|∂S∗

1|
(1 − ε)|∂S∗

1|

|∂S∗
i |

|Ci |

1 2 k − 1

Case |Ci | ≤ |∂S∗
1|

0.1k 0.9k

(1 + ε)|∂S∗
1|
|∂S∗

1|
(1 − ε)|∂S∗

1|

|∂S∗
i |

|Ci |

1 2 k − 1

Case |Ci | ≤ |∂S∗
1|

0.1k 0.9k

(1 + ε)|∂S∗
1|
|∂S∗

1|
(1 − ε)|∂S∗

1|

|∂S∗
i |

|Ci |

1 2 k − 1

Case |Ci | ≤ |∂S∗
1|

0.1k 0.9k

(1 + ε)|∂S∗
1|
|∂S∗

1|
(1 − ε)|∂S∗

1|

0.1k ∙ ε|∂S∗
1|

|∂S∗
i |

|Ci |

1 2 k − 1

Case |Ci | ≤ |∂S∗
1|

0.1k 0.9k

(1 + ε)|∂S∗
1|
|∂S∗

1|
(1 − ε)|∂S∗

1|

0.1k ∙ ε|∂S∗
1|

ALG ≤ k ∙ |∂S∗
1|

=⇒ Ω(ALG) gap

|∂S∗
i |

|Ci |

1 2 k − 1

Case |Ci | ≤ |∂S∗
1|

ALG + Ω(ALG) ≤ 2OPT
=⇒ (2 − ε)-approx

0.1k 0.9k

(1 + ε)|∂S∗
1|
|∂S∗

1|
(1 − ε)|∂S∗

1|

0.1k ∙ ε|∂S∗
1|

ALG ≤ k ∙ |∂S∗
1|

=⇒ Ω(ALG) gap

|∂S∗
i |

|Ci |

1 2 k − 1

Hard case for greedy

No such gap

Hard case for greedy

No such gap

|C1|

|∂S∗
k−1|

Hard case for greedy

No such gap

|C1|

|∂S∗
k−1|

mincut(G) = |C1| ≈ |∂S∗
1| ≈ |∂S∗

i | for all i

Hard case for greedy

No such gap

|C1|

|∂S∗
k−1|

mincut(G) = |C1| ≈ |∂S∗
1| ≈ |∂S∗

i | for all i

We have |∂S∗
i | ≈ mincut(G) for all i ≤ k − 1 .

Crossing cuts

Hard case: all ∂S∗
i are near-mincuts (i ≤ k − 1)

Crossing cuts

Hard case: all ∂S∗
i are near-mincuts (i ≤ k − 1)

Consider the set of near-mincuts of G. Suppose two
near-mincuts cross.

Crossing cuts

Hard case: all ∂S∗
i are near-mincuts (i ≤ k − 1)

Consider the set of near-mincuts of G. Suppose two
near-mincuts cross.

min-4-cut(G) ≤ 2(1 + O(ε)) ∙ mincut(G)

Crossing cuts

Hard case: all ∂S∗
i are near-mincuts (i ≤ k − 1)

Consider the set of near-mincuts of G. Suppose two
near-mincuts cross.

min-4-cut(G) ≤ 2(1 + O(ε)) ∙ mincut(G)

Greedily take best min-4-cut. Pay (2 + O(ε)) ∙mincut(G) for
3 additional components =⇒ (2

3 + O(ε)) ∙ mincut(G) cost
per additional component.

Crossing cuts

Hard case: all ∂S∗
i are near-mincuts (i ≤ k − 1)

Consider the set of near-mincuts of G. Suppose two
near-mincuts cross.

min-4-cut(G) ≤ 2(1 + O(ε)) ∙ mincut(G)

Greedily take best min-4-cut. Pay (2 + O(ε)) ∙mincut(G) for
3 additional components =⇒ (2

3 + O(ε)) ∙ mincut(G) cost
per additional component.

If we can repeat this Ω(k) times, we save Ω(OPT)
=⇒ (2 − ε)-approx.

Hard case

Hard case:

Hard case

Hard case:
All ∂S∗

i are near-mincuts (i ≤ k − 1)

Hard case

Hard case:
All ∂S∗

i are near-mincuts (i ≤ k − 1)
No two near-mincuts cross

Hard case

Hard case:
All ∂S∗

i are near-mincuts (i ≤ k − 1)
No two near-mincuts cross

Hard case

Hard case:
All ∂S∗

i are near-mincuts (i ≤ k − 1)
No two near-mincuts cross

Only nO(1+ε) many (1 + ε)-near-mincuts

Hard case

Hard case:
All ∂S∗

i are near-mincuts (i ≤ k − 1)
No two near-mincuts cross

Only nO(1+ε) many (1 + ε)-near-mincuts

Don’t cross =⇒ forms laminar family

Hard case

Hard case:
All ∂S∗

i are near-mincuts (i ≤ k − 1)
No two near-mincuts cross

Only nO(1+ε) many (1 + ε)-near-mincuts

Don’t cross =⇒ forms laminar family

Hard case

Hard case:
All ∂S∗

i are near-mincuts (i ≤ k − 1)
No two near-mincuts cross

Only nO(1+ε) many (1 + ε)-near-mincuts

Don’t cross =⇒ forms laminar family

Separate FPT (2 − ε)-approx algorithm.

Open questions

Improved approximation factor, and/or FPT APX hardness
result

Open questions

Improved approximation factor, and/or FPT APX hardness
result

FPT approximation scheme for min k -cut?

