(2 – ϵ)-approximate minimum *k*-cut in FPT time Jason Li

Joint work with Anupam Gupta, Euiwoong Lee

Carnegie Mellon University

January 10, 2018

• Given graph G, remove min weight set of edges that splits G into $\geq k$ connected components

Given graph G, remove min weight set of edges that splits G into $\geq k$ connected components

General k

• Given graph G, remove min weight set of edges that splits G into $\geq k$ connected components

General k

• [SV95] Greedy 2-approx

• Given graph G, remove min weight set of edges that splits G into $\geq k$ connected components

General k

- [SV95] Greedy 2-approx
- [Man17] (2ϵ) -approx is NP-hard assuming SSEH

Given graph G, remove min weight set of edges that splits G into $\geq k$ connected components

General k

- [SV95] Greedy 2-approx
- [Man17] (2ϵ) -approx is NP-hard assuming SSEH

Constant *k*

Given graph G, remove min weight set of edges that splits G into $\geq k$ connected components

General k

- [SV95] Greedy 2-approx
- [Man17] (2ϵ) -approx is NP-hard assuming SSEH

Constant *k*

• Karger's random edge sampling: exact $O(n^{2k})$ time

Given graph G, remove min weight set of edges that splits G into $\geq k$ connected components

General k

- [SV95] Greedy 2-approx
- [Man17] (2ϵ) -approx is NP-hard assuming SSEH

Constant *k*

• Karger's random edge sampling: exact $O(n^{2k})$ time

FPT in k (running time $f(k)n^{O(1)}$)

Given graph G, remove min weight set of edges that splits G into $\geq k$ connected components

General k

- [SV95] Greedy 2-approx
- [Man17] (2ϵ) -approx is NP-hard assuming SSEH

Constant *k*

• Karger's random edge sampling: exact $O(n^{2k})$ time

FPT in k (running time $f(k)n^{O(1)}$)

 \bullet Exact is W[1]-hard parameterized by k

Given graph G, remove min weight set of edges that splits G into $\geq k$ connected components

General k

- [SV95] Greedy 2-approx
- [Man17] (2ϵ) -approx is NP-hard assuming SSEH

Constant *k*

• Karger's random edge sampling: exact $O(n^{2k})$ time

FPT in k (running time $f(k)n^{O(1)}$)

- \bullet Exact is W[1]-hard parameterized by k
- Approx parameterized by k ?

Given graph G, remove min weight set of edges that splits G into $\geq k$ connected components

General k

- [SV95] Greedy 2-approx
- [Man17] (2ϵ) -approx is NP-hard assuming SSEH

Constant *k*

• Karger's random edge sampling: exact $O(n^{2k})$ time

FPT in k (running time $f(k)n^{O(1)}$)

- \bullet Exact is W[1]-hard parameterized by k
- Approx parameterized by k ?
- **This talk:** 1.9997**-approx in** $2^{O(k^6)} \cdot \tilde{O}(n^4)$ time.

High level idea

Follow the greedy 2-approx algorithm of [SV95]

High level idea

- Follow the greedy 2-approx algorithm of [SV95]
- If graph does not have a specific structure, then a simple modification of [SV95] already guarantees $(2 - \epsilon)$ -approx

High level idea

- Follow the greedy 2-approx algorithm of [SV95]
- If graph does not have a specific structure, then a simple modification of [SV95] already guarantees $(2 - \epsilon)$ -approx
- Separate (2ϵ) -approx algorithm that exploits this structure

 \bullet For $k - 1$ iterations, greedily take the min global cut

- \bullet For $k 1$ iterations, greedily take the min global cut
- \bullet Min cut that increases # connected components by 1

- \bullet For $k 1$ iterations, greedily take the min global cut
- \bullet Min cut that increases # connected components by 1
- **Consider OPT:**

- \bullet For $k 1$ iterations, greedily take the min global cut
- \bullet Min cut that increases # connected components by 1
- **Consider OPT:**

$$
|\partial S_1^*| \leq |\partial S_2^*| \leq \cdots \leq |\partial S_k^*|
$$

$$
\sum_{i=1}^k |\partial S_i^*| = 2 \cdot OPT
$$

- \bullet For $k 1$ iterations, greedily take the min global cut
- \bullet Min cut that increases # connected components by 1
- **Consider OPT:**

$$
\frac{\partial S_1^*| \leq |\partial S_2^*| \leq \cdots \leq |\partial S_k^*|}{\sum_{i=1}^k |\partial S_i^*| = 2 \cdot OPT}
$$

- \bullet For $k 1$ iterations, greedily take the min global cut
- \bullet Min cut that increases # connected components by 1
- **Consider OPT:**

$$
|\partial S_1^*| \leq |\partial S_2^*| \leq \cdots \leq |\partial S_k^*|
$$

$$
\sum_{i=1}^k |\partial S_i^*| = 2 \cdot OPT
$$

$$
\partial S_1^*
$$
 is possible cut

$$
\implies |C_1| \leq |\partial S_1^*|
$$

- \bullet For $k 1$ iterations, greedily take the min global cut
- \bullet Min cut that increases # connected components by 1
- **Consider OPT:**

$$
|\partial S_1^*| \leq |\partial S_2^*| \leq \cdots \leq |\partial S_k^*|
$$

$$
\sum_{i=1}^k |\partial S_i^*| = 2 \cdot OPT
$$

$$
\partial S_1^*
$$
 is possible cut

$$
\implies |C_1| \leq |\partial S_1^*|
$$

- \bullet For $k 1$ iterations, greedily take the min global cut
- \bullet Min cut that increases # connected components by 1
- **Consider OPT:**

- \bullet For $k 1$ iterations, greedily take the min global cut
- \bullet Min cut that increases # connected components by 1
- Consider OPT:

- \bullet For $k 1$ iterations, greedily take the min global cut
- \bullet Min cut that increases # connected components by 1
- Consider OPT:

Recall that $|C_i| \leq |\partial \mathcal{S}^*_i|$ for all *i*. What about $|C_i|$ vs. $|\partial \mathcal{S}^*_1|$?

- Recall that $|C_i| \leq |\partial \mathcal{S}^*_i|$ for all *i*. What about $|C_i|$ vs. $|\partial \mathcal{S}^*_1|$?
- Suppose, at some iteration, $|C_i| > |\partial S_1^*|$.

- Recall that $|C_i| \leq |\partial \mathcal{S}^*_i|$ for all *i*. What about $|C_i|$ vs. $|\partial \mathcal{S}^*_1|$?
- Suppose, at some iteration, $|C_i| > |\partial S_1^*|$.

- Recall that $|C_i| \leq |\partial \mathcal{S}^*_i|$ for all *i*. What about $|C_i|$ vs. $|\partial \mathcal{S}^*_1|$?
- Suppose, at some iteration, $|C_i| > |\partial S_1^*|$.

 $|\partial S_1^*|$ must be completely cut. Otherwise, it's a valid cut!

- Recall that $|C_i| \leq |\partial \mathcal{S}^*_i|$ for all *i*. What about $|C_i|$ vs. $|\partial \mathcal{S}^*_1|$?
- Suppose, at some iteration, $|C_i| > |\partial S_1^*|$.

 $|\partial S_1^*|$ must be completely cut. Otherwise, it's a valid cut!

- Recall that $|C_i| \leq |\partial \mathcal{S}^*_i|$ for all *i*. What about $|C_i|$ vs. $|\partial \mathcal{S}^*_1|$?
- Suppose, at some iteration, $|C_i| > |\partial S_1^*|$.

- $|\partial S_1^*|$ must be completely cut. Otherwise, it's a valid cut!
- Consider the algorithm's components so far. The union of some components is exactly \mathcal{S}_1^* .

- Recall that $|C_i| \leq |\partial \mathcal{S}^*_i|$ for all *i*. What about $|C_i|$ vs. $|\partial \mathcal{S}^*_1|$?
- Suppose, at some iteration, $|C_i| > |\partial S_1^*|$.

- $|\partial S_1^*|$ must be completely cut. Otherwise, it's a valid cut!
- Consider the algorithm's components so far. The union of some components is exactly \mathcal{S}_1^* .
- **Idea: guess all subsets of components**

- Recall that $|C_i| \leq |\partial \mathcal{S}^*_i|$ for all *i*. What about $|C_i|$ vs. $|\partial \mathcal{S}^*_1|$?
- Suppose, at some iteration, $|C_i| > |\partial S_1^*|$.

- $|\partial S_1^*|$ must be completely cut. Otherwise, it's a valid cut!
- Consider the algorithm's components so far. The union of some components is exactly \mathcal{S}_1^* .
- **Idea: guess all subsets of components**
- Branching factor: 2^k, branching depth: $k \implies 2^{k^2}$ time

- Recall that $|C_i| \leq |\partial \mathcal{S}^*_i|$ for all *i*. What about $|C_i|$ vs. $|\partial \mathcal{S}^*_1|$?
- Suppose, at some iteration, $|C_i| > |\partial S_1^*|$.

- $|\partial S_1^*|$ must be completely cut. Otherwise, it's a valid cut!
- Consider the algorithm's components so far. The union of some components is exactly \mathcal{S}_1^* .
- **Idea: guess all subsets of components**
- Branching factor: 2^k, branching depth: $k \implies 2^{k^2}$ time
- Henceforth, assume $|C_i| \leq |\partial S_1^*|$ for all $i \in [k-1]$. (重) 重 のQ<mark>Q</mark>

Case $|C_i| \leq |\partial S_1^*|$

Case $|C_i| \leq |\partial S_1^*|$

Hard case for greedy

• No such gap

K ロ K (日) K (日)

Hard case for greedy

Hard case for greedy

Hard case: all $\partial \mathcal{S}^*_i$ are near-mincuts $(i \leq k-1)$

- Hard case: all $\partial \mathcal{S}^*_i$ are near-mincuts $(i \leq k-1)$
- Consider the set of near-mincuts of G. Suppose two near-mincuts cross.

- Hard case: all $\partial \mathcal{S}^*_i$ are near-mincuts $(i \leq k-1)$
- Consider the set of near-mincuts of G. Suppose two near-mincuts cross.

• min-4-cut(G) \leq 2(1 + O(ϵ)) \cdot mincut(G)

- Hard case: all $\partial \mathcal{S}^*_i$ are near-mincuts $(i \leq k-1)$
- Consider the set of near-mincuts of G. Suppose two near-mincuts cross.

- min-4-cut(G) $\leq 2(1 + O(\epsilon)) \cdot$ mincut(G)
- Greedily take best min-4-cut. Pay $(2 + O(\epsilon)) \cdot \text{mincut}(G)$ for 3 additional components $\implies (\frac{2}{3} + \mathsf{O}(\epsilon)) \cdot \mathsf{mincut}(\mathsf{G})$ cost per additional component.

- Hard case: all $\partial \mathcal{S}^*_i$ are near-mincuts $(i \leq k-1)$
- Consider the set of near-mincuts of G. Suppose two near-mincuts cross.

- min-4-cut(G) $\leq 2(1 + O(\epsilon)) \cdot$ mincut(G)
- Greedily take best min-4-cut. Pay $(2 + O(\epsilon)) \cdot \text{mincut}(G)$ for 3 additional components $\implies (\frac{2}{3} + \mathsf{O}(\epsilon)) \cdot \mathsf{mincut}(\mathsf{G})$ cost per additional component.
- If we can repeat this $\Omega(k)$ times, we save $\Omega(OPT)$ \implies (2 – ϵ)-approx.

• Hard case:

- Hard case:
	- All $\partial \mathsf{S}_i^*$ are near-mincuts $(i \leq k-1)$

• Hard case:

- All ∂S_i^* are near-mincuts (*i* ≤ *k* − 1)
- No two near-mincuts cross

- All ∂S_i^* are near-mincuts (*i* ≤ *k* − 1)
- No two near-mincuts cross

- All ∂S_i^* are near-mincuts (*i* ≤ *k* − 1)
- No two near-mincuts cross

• Only $n^{O(1+\epsilon)}$ many $(1+\epsilon)$ -near-mincuts

- All ∂S_i^* are near-mincuts (*i* ≤ *k* − 1)
- No two near-mincuts cross

- Only $n^{O(1+\epsilon)}$ many $(1+\epsilon)$ -near-mincuts
- Don't cross ⇒ forms laminar family

- All ∂S_i^* are near-mincuts (*i* ≤ *k* − 1)
- No two near-mincuts cross

- Only $n^{O(1+\epsilon)}$ many $(1+\epsilon)$ -near-mincuts
- Don't cross ⇒ forms laminar family

 \bullet

• Hard case:

- All ∂S_i^* are near-mincuts (*i* ≤ *k* − 1)
- No two near-mincuts cross

- Only $n^{O(1+\epsilon)}$ many $(1+\epsilon)$ -near-mincuts
- Don't cross \implies forms laminar family
- Separate FPT (2ϵ) -approx algorithm.

Open questions

Improved approximation factor, and/or FPT APX hardness result

Open questions

- Improved approximation factor, and/or FPT APX hardness result
- \bullet FPT approximation scheme for min k -cut?