Approximate Gomory-Hu Tree
In ~Max-Flow Time

Jason Li (CMU)
joint work with Debmalya Panigrahi (Duke)

STOC 2021



Introduction

This talk: all graphs are unweighted and undirected



Introduction

This talk: all graphs are unweighted and undirected

Gomory-Hu tree: a tree on same vertex set s.t. mincutT(u,v)=mincutG(u,v)
- Can be computed using n-1 max-flows [Gomory-Hu'61]

- No faster algorithm for general graphs!

- Unweighted graphs: O(mn) time [BHKP'07], m3/2p1/6 [AKT SODA20]



Introduction

This talk: all graphs are unweighted and undirected

Gomory-Hu tree: a tree on same vertex set s.t. mincutT(u,v)=mincutG(u,v)
- Can be computed using n-1 max-flows [Gomory-Hu'61]

- No faster algorithm for general graphs!

- Unweighted graphs: O(mn) time [BHKP'07], m3/2p1/6 [AKT SODA'20]
Single-source mincut (SSMC): given source vertex s, find all mincut(s,v)

- Can be used to compute GH tree [AKT FOCS'20]



Introduction
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Gomory-Hu tree: a tree on same vertex set s.t. mincutT(u,v)=mincutG(u,v)
- Can be computed using n-1 max-flows [Gomory-Hu'61]

- No faster algorithm for general graphs!

- Unweighted graphs: O(mn) time [BHKP'07], m3/2p1/6 [AKT SODA'20]
Single-source mincut (SSMC): given source vertex s, find all mincut(s,v)

- Can be used to compute GH tree [AKT FOCS'20]

This talk: approximations

- Approximate all-pairs mincut in O(n2) time [AKT FOCS'20]

- Nothing better known for GH tree

This work: (1+¢)-approximate GH tree and SSMC in exact max-flow time
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New primitive: Cut Threshold algorithm

Given s and ‘A (“cut threshold”),
output all veV with mincut(s,v) £\

Cut Threshold => approximate single-source mincut
(=> approximate all-pairs mincut [AKT20])

Cut Threshold => approximate Gomory-Hu tree
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Given a graph and a set R of terminals,
find, for each terminal v, the mincut S, that
Isolates that terminal

Trivial: IRl s-t mincuts
[L.-Panigrahi '20] O(log IRI) s-t mincuts suffice!

Warm-up: global Steiner mincut (separate at least two terminals)
Sample at rate 1/2, 1/4, 1/8, ...

|
If sample at rate ~ =5, then
constant prob. success
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Algorithm CutThresholdStep(G, s, R):

- For each 1=1,2,...,logn _
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Algorithm CutThreshold:
repeat O(Iogzn) times: call CutThresholdStep(G,s,R)
where R = {still uncertified}
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Algorithm CutThresholdStep(G, s, R):

- For each 1=1,2,...,logn _
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Cut Threshold Algorithm

Algorithm: for each i, sample ~1/2' (s always sampled)
compute minimum isolating cuts,

certify all cuts

Claim: each vertex overcounted O(logn) times w.h.p.
Proof: use fact that s-t mincuts are Iahminar:
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E[#times v certified] < O(log IRIl). Chernoff bound: O(log n) w.h.p.
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Approximate SSMC and GH Tree

SSMC algorithm: run Cut Threshold on each 7\=(|+2)i

Gomory-Hu tree algorithm:
standard recursive approach, except multiple branches
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select s uniformly at random [AKT'20]
Control the approximation factor (nontrivial)
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Conclusion and Open Questions

Algorithms for Cut Threshold, (1+¢&)-SSMC, (1+¢)-GHTree
In ~max-flow time
Main tools: minimum isolating cuts + random sampling

Open questions:

- Faster exact GH tree? Reduces to exact SSMC values
- SSMC values faster than n-1 max-flows?

- Approximate GH tree in near-linear time?

- More applications of Minimum Isolating Cuts?



