Approximate Gomory-Hu Tree in ~Max-Flow Time

Jason Li (CMU)

joint work with Debmalya Panigrahi (Duke)

STOC 2021

This talk: all graphs are unweighted and undirected

- This talk: all graphs are unweighted and undirected
- Gomory-Hu tree: a tree on same vertex set s.t. mincut_T(u,v)=mincut_G(u,v)
- Can be computed using n-1 max-flows [Gomory-Hu'61]
- No faster algorithm for general graphs!
- Unweighted graphs: Õ(mn) time [BHKP'07], m^{3/2}n^{1/6} [AKT SODA'20]

- This talk: all graphs are unweighted and undirected
- Gomory-Hu tree: a tree on same vertex set s.t. $mincut_T(u,v)=mincut_G(u,v)$
- Can be computed using n-1 max-flows [Gomory-Hu'61]
- No faster algorithm for general graphs!
- Unweighted graphs: Õ(mn) time [BHKP'07], m^{3/2}n^{1/6} [AKT SODA'20]
- Single-source mincut (SSMC): given source vertex s, find all mincut(s,v)
- Can be used to compute GH tree [AKT FOCS'20]

- This talk: all graphs are unweighted and undirected
- Gomory-Hu tree: a tree on same vertex set s.t. mincut_T(u,v)=mincut_G(u,v)
- Can be computed using n-1 max-flows [Gomory-Hu'61]
- No faster algorithm for general graphs!
- Unweighted graphs: Õ(mn) time [BHKP'07], m^{3/2}n^{1/6} [AKT SODA'20]
- Single-source mincut (SSMC): given source vertex s, find all mincut(s,v)
- Can be used to compute GH tree [AKT FOCS'20]

This talk: approximations

- Approximate all-pairs mincut in O(n²) time [AKT FOCS'20]
- Nothing better known for GH tree
- This work: (1+E)-approximate GH tree and SSMC in exact max-flow time

Outline

New primitive: Cut Threshold algorithm

Outline

New primitive: Cut Threshold algorithm

Given s and λ ("cut threshold"), output all $v \in V$ with mincut(s,v) $\leq \lambda$

Outline

New primitive: Cut Threshold algorithm

Given s and λ ("cut threshold"), output all $v \in V$ with mincut(s,v) $\leq \lambda$

Cut Threshold => approximate single-source mincut (=> approximate all-pairs mincut [AKT20])

Cut Threshold => approximate Gomory-Hu tree

Given a graph and a set R of terminals, find, for each terminal v, the mincut S_v that isolates that terminal

Given a graph and a set R of terminals, find, for each terminal v, the mincut S_v that isolates that terminal

Trivial: IRI s-t mincuts

[L.-Panigrahi '20] O(log IRI) s-t mincuts suffice!

Given a graph and a set R of terminals, find, for each terminal v, the mincut S_v that isolates that terminal

Trivial: IRI s-t mincuts

[L.-Panigrahi '20] O(log IRI) s-t mincuts suffice!

Warm-up: global Steiner mincut (separate at least two terminals)

Given a graph and a set R of terminals, find, for each terminal v, the mincut S_v that isolates that terminal

Trivial: IRI s-t mincuts

[L.-Panigrahi '20] O(log IRI) s-t mincuts suffice!

Warm-up: global Steiner mincut (separate at least two terminals)

Given a graph and a set R of terminals, find, for each terminal v, the mincut S_v that isolates that terminal

Trivial: IRI s-t mincuts

[L.-Panigrahi '20] O(log IRI) s-t mincuts suffice!

Warm-up: global Steiner mincut (separate at least two terminals)

Given a graph and a set R of terminals, find, for each terminal v, the mincut S_v that isolates that terminal

Trivial: IRI s-t mincuts

[L.-Panigrahi '20] O(log IRI) s-t mincuts suffice!

Warm-up: global Steiner mincut (separate at least two terminals)

If sample at rate ~ \frac{150RI}{150RI}, then constant prob. success

Given a graph and a set R of terminals, find, for each terminal v, the mincut S_v that isolates that terminal

Trivial: IRI s-t mincuts

[L.-Panigrahi '20] O(log IRI) s-t mincuts suffice!

Warm-up: global Steiner mincut (separate at least two terminals)

Sample at rate 1/2, 1/4, 1/8, ...

If sample at rate ~ \(\frac{1508}{1508}\), then constant prob. success

Given s and λ ("cut threshold"), output all v ∈ V with mincut(s,v) ≤ λ

Given s and λ ("cut threshold"), output all $v \in \mathbb{R}$ with mincut(s,v) $\leq \lambda$

Algorithm CutThresholdStep(G, s, R):

- For each i=1,2,...,logn
 - Sample in R with rate $p=1/2^{I}$ except s is always sampled
 - Compute Minimum Isolating Cuts with sampled set RI
 - For each set $S_v: v \in R^i \setminus s$, if $|\partial s_v| \le \lambda$ then certified mincut(s,u) $\le \lambda$ for all $u \in S_v$

Given s and λ ("cut threshold"), output all v∈R with mincut(s,v)≤λ

Algorithm CutThresholdStep(G, s, R):

- For each i=1,2,...,logn
 - Sample in R with rate $p=1/2^{l}$ except s is always sampled
 - Compute Minimum Isolating Cuts with sampled set RI
 - For each set $S_v: v \in R^i \setminus s$, if $|\partial s_v| \le \lambda$ then certified mincut(s,u) $\le \lambda$ for all $u \in S_v$

Claim: Certify $\Omega(1/logn)$ fraction in expectation

Given s and λ ("cut threshold"), output all $v \in \mathbb{R}$ with mincut(s,v) $\leq \lambda$

Algorithm CutThresholdStep(G, s, R):

- For each i=1,2,...,logn
 - Sample in R with rate $p=1/2^{l}$ except s is always sampled
 - Compute Minimum Isolating Cuts with sampled set RI
 - For each set $S_v: v \in R^i \setminus s$, if $|\partial s_v| \le \lambda$ then certified mincut(s,u) $\le \lambda$ for all $u \in S_v$

Claim: Certify $\Omega(1/logn)$ fraction in expectation

Algorithm CutThreshold: repeat O(log²n) times: call CutThresholdStep(G,s,R) where R = {still uncertified}

Given s and λ ("cut threshold"), output all $v \in \mathbb{R}$ with mincut(s,v) $\leq \lambda$

Algorithm CutThresholdStep(G, s, R):

- For each i=1,2,...,logn
 - Sample in R with rate $p=1/2^{l}$ except s is always sampled
 - Compute Minimum Isolating Cuts with sampled set RI
 - For each set $S_v: v \in R^i \setminus s$, if $|\partial s_v| \le \lambda$ then certified mincut(s,u) $\le \lambda$ for all $u \in S_v$

Claim: Certify $\Omega(1/logn)$ fraction in expectation

mincut(v,s

Intuition: fix v∈R certifiable (mincut(s,v)≤λ)

Given s and λ ("cut threshold"), output all $v \in \mathbb{R}$ with mincut(s,v) $\leq \lambda$

Algorithm CutThresholdStep(G, s, R):

- For each i=1,2,...,logn
 - Sample in R with rate $p=1/2^{l}$ except s is always sampled
 - Compute Minimum Isolating Cuts with sampled set RI
 - For each set S_v: v ∈ Rⁱ\s, if |∂s_v|≤λ then certified mincut(s,u) ≤λ for all u ∈ S_v

Claim: Certify $\Omega(1/logn)$ fraction in expectation

mincut(v,s

Intuition: fix v∈R certifiable (mincut(s,v)≤λ)

Given s and λ ("cut threshold"), output all v∈R with mincut(s,v)≤λ

Algorithm CutThresholdStep(G, s, R):

- For each i=1,2,...,logn
 - Sample in R with rate $p=1/2^{I}$ except s is always sampled
 - Compute Minimum Isolating Cuts with sampled set RI
 - For each set $S_v: v \in R^i \setminus s$, if $|\partial s_v| \le \lambda$ then certified mincut(s,u) $\le \lambda$ for all $u \in S_v$

Claim: Certify $\Omega(1/logn)$ fraction in expectation

mincut(v,s

Intuition: fix v∈R certifiable (mincut(s,v)≤λ)

Given s and λ ("cut threshold"), output all $v \in \mathbb{R}$ with mincut(s,v) $\leq \lambda$

Algorithm CutThresholdStep(G, s, R):

- For each i=1,2,...,logn
 - Sample in R with rate $p=1/2^{I}$ except s is always sampled
 - Compute Minimum Isolating Cuts with sampled set RI
 - For each set $S_v: v \in R^i \setminus s$, if $|\partial s_v| \le \lambda$ then certified mincut(s,u) $\le \lambda$ for all $u \in S_v$

Claim: Certify $\Omega(1/logn)$ fraction in expectation

Intuition: fix v∈R certifiable (mincut(s,v)≤λ)
with prob. ~1/IS∩RI, certify IS∩RI vertices => E[#certify]≈1
over all v certifiable, E[#certify]≈#certifiable

Given s and λ ("cut threshold"), output all $v \in \mathbb{R}$ with mincut(s,v) $\leq \lambda$

Algorithm CutThresholdStep(G, s, R):

- For each i=1,2,...,logn
 - Sample in R with rate $p=1/2^{I}$ except s is always sampled
 - Compute Minimum Isolating Cuts with sampled set RI
 - For each set $S_v: v \in R^i \setminus s$, if $|\partial s_v| \le \lambda$ then certified mincut(s,u) $\le \lambda$ for all $u \in S_v$

Claim: Certify $\Omega(1/\log n)$ fraction in expectation

Intuition: fix $v \in R$ certifiable (mincut(s,v) $\leq \lambda$) overcounting? with prob. ~1/IS^RI, certify IS^RI vertices => E[#certify] ≈ 1 over all v certifiable, E[#certify] \approx #certifiable

Algorithm: for each i, sample ~1/2ⁱ (s always sampled) compute minimum isolating cuts, certify all cuts

Algorithm: for each i, sample ~1/2ⁱ (s always sampled) compute minimum isolating cuts, certify all cuts

Claim: each vertex overcounted O(logn) times w.h.p.

Proof: use fact that s-t mincuts are laminar:

Algorithm: for each i, sample ~1/2ⁱ (s always sampled) compute minimum isolating cuts, certify all cuts

Claim: each vertex overcounted O(logn) times w.h.p.

Proof: use fact that s-t mincuts are laminar:

Algorithm: for each i, sample ~1/2ⁱ (s always sampled) compute minimum isolating cuts, certify all cuts

Claim: each vertex overcounted O(logn) times w.h.p.

Proof: use fact that s-t mincuts are laminar:

Algorithm: for each i, sample ~1/2ⁱ (s always sampled) compute minimum isolating cuts, certify all cuts

Claim: each vertex overcounted O(logn) times w.h.p.

Proof: use fact that s-t mincuts are laminar:

E[#times v certified] \lesssim O(log IRI). Chernoff bound: O(log n) w.h.p.

Approximate SSMC and GH Tree

SSMC algorithm: run Cut Threshold on each $\lambda = (1+\xi)'$

Approximate SSMC and GH Tree

SSMC algorithm: run Cut Threshold on each $\lambda = (1+\xi)^{\prime}$

Gomory-Hu tree algorithm:

standard recursive approach, except multiple branches

Approximate SSMC and GH Tree

SSMC algorithm: run Cut Threshold on each $\lambda = (1+\xi)^{\prime}$

Gomory-Hu tree algorithm:

standard recursive approach, except multiple branches

select s uniformly at random [AKT'20]

Control the approximation factor (nontrivial)

Conclusion and Open Questions

Algorithms for Cut Threshold, (1+8)-SSMC, (1+8)-GHTree in ~max-flow time

Main tools: minimum isolating cuts + random sampling

Conclusion and Open Questions

Algorithms for Cut Threshold, (1+8)-SSMC, (1+8)-GHTree in ~max-flow time

Main tools: minimum isolating cuts + random sampling

Open questions:

- Faster exact GH tree? Reduces to exact SSMC values
- SSMC values faster than n-1 max-flows?
- Approximate GH tree in near-linear time?
- More applications of Minimum Isolating Cuts?