Approximate Gomory-Hu Tree
In ~Max-Flow Time

Jason Li (CMU)
joint work with Debmalya Panigrahi (Duke)

STOC 2021

Introduction

This talk: all graphs are unweighted and undirected

Introduction

This talk: all graphs are unweighted and undirected

Gomory-Hu tree: a tree on same vertex set s.t. mincutT(u,v)=mincutG(u,v)
- Can be computed using n-1 max-flows [Gomory-Hu'61]

- No faster algorithm for general graphs!

- Unweighted graphs: O(mn) time [BHKP'07], m3/2p1/6 [AKT SODA20]

Introduction

This talk: all graphs are unweighted and undirected

Gomory-Hu tree: a tree on same vertex set s.t. mincutT(u,v)=mincutG(u,v)
- Can be computed using n-1 max-flows [Gomory-Hu'61]

- No faster algorithm for general graphs!

- Unweighted graphs: O(mn) time [BHKP'07], m3/2p1/6 [AKT SODA'20]
Single-source mincut (SSMC): given source vertex s, find all mincut(s,v)

- Can be used to compute GH tree [AKT FOCS'20]

Introduction

This talk: all graphs are unweighted and undirected

Gomory-Hu tree: a tree on same vertex set s.t. mincutT(u,v)=mincutG(u,v)
- Can be computed using n-1 max-flows [Gomory-Hu'61]

- No faster algorithm for general graphs!

- Unweighted graphs: O(mn) time [BHKP'07], m3/2p1/6 [AKT SODA'20]
Single-source mincut (SSMC): given source vertex s, find all mincut(s,v)

- Can be used to compute GH tree [AKT FOCS'20]

This talk: approximations

- Approximate all-pairs mincut in O(n2) time [AKT FOCS'20]

- Nothing better known for GH tree

This work: (1+¢)-approximate GH tree and SSMC in exact max-flow time

Outline

New primitive: Cut Threshold algorithm

Outline

New primitive: Cut Threshold algorithm

Given s and ‘A (“cut threshold”),
output all veV with mincut(s,v) ¢\

Outline

New primitive: Cut Threshold algorithm

Given s and ‘A (“cut threshold”),
output all veV with mincut(s,v) £\

Cut Threshold => approximate single-source mincut
(=> approximate all-pairs mincut [AKT20])

Cut Threshold => approximate Gomory-Hu tree

Given a graph and a set R of terminals,
find, for each terminal v, the mincut S, that
Isolates that terminal

Given a graph and a set R of terminals,
find, for each terminal v, the mincut S, that
Isolates that terminal

Trivial: IRl s-t mincuts
[L.-Panigrahi '20] O(log IRI) s-t mincuts suffice!

Given a graph and a set R of terminals,
find, for each terminal v, the mincut S, that

Isolates that terminal

Trivial: IRl s-t mincuts
[L.-Panigrahi '20] O(log IRI) s-t mincuts suffice!

Warm-up: global Steiner mincut (separate at least two terminals)

Given a graph and a set R of terminals,
find, for each terminal v, the mincut S, that

Isolates that terminal

Trivial: IRIl s-t mincuts
[L.-Panigrahi '20] O(log IRI) s-t mincuts suffice!

Warm-up: global Steiner mincut (separate at least two terminals)

o

Given a graph and a set R of terminals,
find, for each terminal v, the mincut S, that

Isolates that terminal

Trivial: IR|l s-t mincuts
[L.-Panigrahi '20] O(log IRI) s-t mincuts suffice!

Warm-up: global Steiner mincut (separate at least two terminals)

Given a graph and a set R of terminals,
find, for each terminal v, the mincut S, that

Isolates that terminal

Trivial: IRl s-t mincuts
[L.-Panigrahi '20] O(log IRI) s-t mincuts suffice!

Warm-up: global Steiner mincut (separate at least two terminals)

|
If sample at rate ~ 55, then
constant prob. success

Given a graph and a set R of terminals,
find, for each terminal v, the mincut S, that
Isolates that terminal

Trivial: IRl s-t mincuts
[L.-Panigrahi '20] O(log IRI) s-t mincuts suffice!

Warm-up: global Steiner mincut (separate at least two terminals)
Sample at rate 1/2, 1/4, 1/8, ...

|
If sample at rate ~ =5, then
constant prob. success

Cut Threshold Algorithm

Given s and ‘A (“cut threshold”), output all veV with mincut(s,v) £\

Cut Threshold Algorithm

Given s and ‘A (“cut threshold”), output all veR with mincut(s,v) £\

Algorithm CutThresholdStep(G, s, R):

- For each 1=1,2,...,logn _
- Sample in R with rate p=1/2' except s is always sampled
- Compute Minimum Isolating Cuts with sampled set R

- For each set S,: veR'\s, ‘
if |9S//£2 then certified mincut(s,u) <A for all ueS, X\
Sv

Cut Threshold Algorithm

Given s and ‘A (“cut threshold”), output all veR with mincut(s,v) £\
Algorithm CutThresholdStep(G, s, R):
- For each 1=1,2,...,logn _

- Sample in R with rate p=1/2' except s is always sampled

- Compute Minimum Isolating Cuts with sampled set R!

- For each set S,: veR'\s, ‘
if |9S//£2 then certified mincut(s,u) <A for all ueS, X2\

Claim: Certify £)(1/logn) fraction in expectation

Cut Threshold Algorithm

Given s and ‘A (“cut threshold”), output all veR with mincut(s,v) £\

Algorithm CutThresholdStep(G, s, R):

- For each 1=1,2,...,logn _
- Sample in R with rate p=1/2' except s is always sampled
- Compute Minimum Isolating Cuts with sampled set R!

- For each set S,: veR'\s, ‘
if |95,/42 then certified mincut(s,u) < for all u€S, X7\

Claim: Certify £)(1/logn) fraction in expectation

Algorithm CutThreshold:
repeat O(Iogzn) times: call CutThresholdStep(G,s,R)
where R = {still uncertified}

Cut Threshold Algorithm

Given s and ‘A (“cut threshold”), output all veR with mincut(s,v) £\

Algorithm CutThresholdStep(G, s, R):

- For each 1=1,2,...,logn _
- Sample in R with rate p=1/2' except s is always sampled
- Compute Minimum Isolating Cuts with sampled set R!

- For each set S,: veR'\s, ‘
if |95,/%2 then certified mincut(s,u) < for all u€S, X7\

Claim: Certify {1(1/logn) fraction in expectation
Intuition: fix veR certifiable (mincut(s,v)<2) é

min(u'l‘(v, S

Cut Threshold Algorithm

Given s and ‘A (“cut threshold”), output all veR with mincut(s,v) £\

Algorithm CutThresholdStep(G, s, R):

- For each 1=1,2,...,logn _
- Sample in R with rate p=1/2' except s is always sampled
- Compute Minimum Isolating Cuts with sampled set R!

- For each set S,: veR'\s, ‘
if |95,/%2 then certified mincut(s,u) < for all ueS, X7\

Claim: Certify {1(1/logn) fraction in expectation
Intuition: fix veR certifiable (mincut(s,v)<2) %

min(u'l‘(v, S

Cut Threshold Algorithm

Given s and ‘A (“cut threshold”), output all veR with mincut(s,v) £\

Algorithm CutThresholdStep(G, s, R):

- For each 1=1,2,...,logn _
- Sample in R with rate p=1/2' except s is always sampled
- Compute Minimum Isolating Cuts with sampled set R!

- For each set S, veR'\s, ‘
if |95,/%2 then certified mincut(s,u) < for all u€S, X7\

Claim: Certify {1(1/logn) fraction in expectation
Intuition: fix veR certifiable (mincut(s,v)<2) %

min(u'l‘(v, S

Cut Threshold Algorithm

Given s and ‘A (“cut threshold”), output all veR with mincut(s,v) £\

Algorithm CutThresholdStep(G, s, R):

- For each 1=1,2,...,logn _
- Sample in R with rate p=1/2' except s is always sampled
- Compute Minimum Isolating Cuts with sampled set R!

- For each set S,: veR'\s, ‘
if |95,/%2 then certified mincut(s,u) < for all u€S, Xz

. o » . SV ' e
Claim: Certify {1(1/logn) fraction in expectation
Intuition: fix veR certifiable (mincut(s,v)<)

with prob. ~1/ISnRlI, certify ISnRI vertices => E[#certify]x1

over all v certifiable, E[#certify]=#certifiable ,.,mm(v,s

Cut Threshold Algorithm

Given s and ‘A (“cut threshold”), output all veR with mincut(s,v) £\

Algorithm CutThresholdStep(G, s, R):

- For each 1=1,2,...,logn _
- Sample in R with rate p=1/2' except s is always sampled
- Compute Minimum Isolating Cuts with sampled set R!

- For each set S, veR'\s, ‘
if |95,/%2 then certified mincut(s,u) < for all ueS, Xz

Claim: Certify £)(1/logn) fraction in expectation

Intuition: fix veR certifiable (mincut(s,v)¢A) overcou ntingz
with prob. ~1/ISnRlI, certify ISnRI vertices => E[#certify]x1

over all v certifiable, E[#certify]x#certifiable ,.,mm(v,s

Cut Threshold Algorithm

Algorithm: for each i, sample ~1/2' (s always sampled)
compute minimum isolating cuts,
certify all cuts

Cut Threshold Algorithm

Algorithm: for each i, sample ~1/2' (s always sampled)
compute minimum isolating cuts,

certify all cuts

Claim: each vertex overcounted O(logn) times w.h.p.
Proof: use fact that s-t mincuts are laminar:

Q))))

Cut Threshold Algorithm

Algorithm: for each I, sample ~1/2! (s always sampled)
compute minimum isolating cuts,

certify all cuts

Claim: each vertex overcounted O(logn) times w.h.p.
Proof: use fact that s-t mincuts are laminar:

@ @]
L ® @
prob. sampled : " S
at correct scale o |
\ v L !

‘ i
E[#times v certified] £ X "':5‘* 3 +3* %*'?‘.-;

Cut Threshold Algorithm

Algorithm: for each i, sample ~1/2' (s always sampled)
compute minimum isolating cuts,

certify all cuts

Claim: each vertex overcounted O(logn) times w.h.p.
Proof: use fact that s-t mincuts are Iahminar:

@ > L]
[] (=] @
prob. sampled . . S
at correct scale ° /

e —

¥

|

G
3
i
3

” .
e = 5.
; ; J -'-:TE

wi— 9
+ HI—9

E[#times v certified] £ ";‘ +

+-|- ot If‘l |R|

v k|

-t |

+

M) — W) -

Dominated by -:— +

Cut Threshold Algorithm

Algorithm: for each i, sample ~1/2' (s always sampled)
compute minimum isolating cuts,

certify all cuts

Claim: each vertex overcounted O(logn) times w.h.p.
Proof: use fact that s-t mincuts are Iahminar:

® e -]
prob. sampled . i ’ . §
at correct scale ° /

+
: ' o i
Dominated by ekt ad i i +Ha = In IR]

E[#times v certified] < O(log IRIl). Chernoff bound: O(log n) w.h.p.

Approximate SSMC and GH Tree

SSMC algorithm: run Cut Threshold on each ’/\'-=-'(|"$)'i

Approximate SSMC and GH Tree

SSMC algorithm: run Cut Threshold on each ’/\=(|"5)'i

Gomory-Hu tree algorithm:
standard recursive approach, except multiple branches

<7 Y
A

Approximate SSMC and GH Tree

SSMC algorithm: run Cut Threshold on each 7\=(|+2)i

Gomory-Hu tree algorithm:
standard recursive approach, except multiple branches

< Y
4 O\

select s uniformly at random [AKT'20]
Control the approximation factor (nontrivial)

Conclusion and Open Questions

Algorithms for Cut Threshold, (1+¢&)-SSMC, (1+¢)-GHTree
In ~max-flow time
Main tools: minimum isolating cuts + random sampling

Conclusion and Open Questions

Algorithms for Cut Threshold, (1+¢&)-SSMC, (1+¢)-GHTree
In ~max-flow time
Main tools: minimum isolating cuts + random sampling

Open questions:

- Faster exact GH tree? Reduces to exact SSMC values
- SSMC values faster than n-1 max-flows?

- Approximate GH tree in near-linear time?

- More applications of Minimum Isolating Cuts?

