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Flow/Cut Duality

Given a subset of vertices S, consider
b(S)| — [Zby]

_1 dS < size of boundary

-1 net |Ib(S)I=2 flow must
0S=2 go across 9S=2 edges
Ib(S)I=2 — any flow has congestion >=1
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Flow/Cut Duality
b(S)|

For any S, congestion >=

oS

Flow/Cut Duality: congestion = max
ScV 0S

|b(S)|

Congestion Approximator:

family C of subsets S s.t.
b(S)|

for all demands b
(b(V)=0)

congestion <= & - max
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Approximate Max-Flow
[Sherman '13, '17] Given polylog-quality congestion

apprommator can solve (1+¢&)-approximate congestion in O(m/¢)
with O(m) representatlon size

[Racke, Shah, Taubig '14] Can compute polylog-quality
congestion approximator by computing (1+1/polylog)-
approximate max-flow on instances of total size O(m)

Cyclic dependency! Resolved by [Peng '16] using recursive
graph sparsification. Complicated algorithm

This work: polylog-quality congestion approximator without
recursive max-flow
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Our Congestion Approximator Construction
Theorem: Consider partitions Pyi Poue P of V s.t.

(1) P1={{v}:veV} Is singletons and PL={V} Is single cluster

—

(2) For each | and each cluster CeP;_ 4, is an expander

oP; N E[C] U dC "mixes" in G[C] =1

With CongeStion Actual: slightly weaker
(3) For each |, there is a flow dP;  1—0dP;

with congestion polylog s.t.

each ecP; sends 1 flow and =
each ec PI +1 receives <=1/2 flow
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Our Congestion Approximator Construction
Theorem: Consider partitions Pyi Pou P of V s.t.

For each |, let R,—j be the

common refinement of P
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Constructing the Congestion Approximator

Ps Is an expander decomposition (doable)

In general, use Pq, ..., Pi_j to construct P;

Max-flow calls required, but use structure of
Py, ... P;_7 to build "pseudo"-congestion
approximator sufficient for the specialized
max-flow calls
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Conclusion

Bottom-up congestion approximator construction,
In contrast to top-down of [Racke, Shah, Taubig '14]

No recursive max-flow required — cleaner algorithm

Number of polylog factors still high (unspecified).
Open question: reduce number of polylog factors?



