Congestion-Approximators
from the Bottom Up

Jason Li (CMU)
Joint with Satish Rao (Berkeley),
Di Wang (Google)

Max-Flow Problem

Given undirected (uncapacitated) graph
G=(V,E) and vector b in RY with X by=0

jmli
Typewriter
want net flow bv at each vertex v

Max-Flow Problem

Given undirected (uncapacitated) graph
G=(V,E) and vector b in RY with X by=0

+1]s
s-t max-flow:b=1g-1;=|°

-1t

jmli
Typewriter
want net flow bv at each vertex v

Max-Flow Problem

Given undirected (uncapacitated) graph
G=(V,E) and vector b in RY with 2> by=0

+1|s
s-t max-flow: b =1g-1;=|°
1
Minimize congestion
= max amount of flow sent along any edge

jmli
Typewriter
want net flow bv at each vertex v

Max-Flow Problem

Given undirected (uncapacitated) graph
G=(V,E) and vector b in RY with 2> by=0

+1|s .
¥ <
s-t max-flow: b = 13 — 11: =| 0 -@t

Minimize congestion
= max amount of flow sent along any edge

jmli
Typewriter
want net flow bv at each vertex v

Max-Flow Problem

Given undirected (uncapacitated) graph
G=(V,E) and vector b in RY with X by=0

+1]|s

Y

Y
S

s-t max-flow: b =1g-1;=|°

. 3 \N/3
Minimize congestion congestion = 1/3

= max amount of flow sent along any edge

jmli
Typewriter
want net flow bv at each vertex v

Flow/Cut Duality

Given a subset of vertices S, consider
b(S)| — [Zby]

0S < size of boundary

Flow/Cut Duality

Given a subset of vertices S, consider
b(S)| — [Zby]

0S < size of boundary

-1 +1

-1

Flow/Cut Duality

Given a subset of vertices S, consider
b(S)| — [Zby]

_1 dS < size of boundary

Flow/Cut Duality

Given a subset of vertices S, consider
b(S)| — [Zby]

_1 dS < size of boundary

Flow/Cut Duality

Given a subset of vertices S, consider
b(S)| — [Zby]

_1 dS < size of boundary

-1 net |Ib(S)I=2 flow must
0S=2 go across 9S=2 edges
Ib(S)I=2 — any flow has congestion >=1

Flow/Cut Duality
b(S)|

For any S, congestion >=

oS

Flow/Cut Duality
b(S)|

For any S, congestion >=

oS

Flow/Cut Duality: congestion = max
ScV 0S

|b(S)|

Flow/Cut Duality
b(S)|

For any S, congestion >=

oS

Flow/Cut Duality: congestion = max
ScV 0S

|b(S)|

Congestion Approximator:

family C of subsets S s.t.
b(S)|

congestion <= - max

/] Sel O0S
quality

Flow/Cut Duality
b(S)|

For any S, congestion >=

oS

Flow/Cut Duality: congestion = max
ScV 0S

|b(S)|

Congestion Approximator:

family C of subsets S s.t.
b(S)|

for all demands b
(b(V)=0)

congestion <= & - max

/7 Sel O0S
quality

Approximate Max-Flow

[Sherman '13, '17] Given polylog-quality congestion

apprommator can solve (1+¢&)-approximate congestion in O(m/¢)
with O(m) representatlon size

Approximate Max-Flow
[Sherman '13, '17] Given polylog-quality congestion

apprommator can solve (1+¢&)-approximate congestion in O(m/¢)

with O(m) representatlon size
[Racke, Shah, Taubig '14] Can compute polylog-quality

congestion approximator by computing (1+1/polylog)-
approximate max-flow on instances of total size O(m)

Approximate Max-Flow
[Sherman '13, '17] Given polylog-quality congestion

apprommator can solve (1+¢&)-approximate congestion in O(m/¢)

with O(m) representatlon size
[Racke, Shah, Taubig '14] Can compute polylog-quality

congestion approximator by computing (1+1/polylog)-
approximate max-flow on instances of total size O(m)

Cyclic dependency! Resolved by [Peng '16] using recursive
graph sparsification. Complicated algorithm

Approximate Max-Flow
[Sherman '13, '17] Given polylog-quality congestion

apprommator can solve (1+¢&)-approximate congestion in O(m/¢)
with O(m) representatlon size

[Racke, Shah, Taubig '14] Can compute polylog-quality
congestion approximator by computing (1+1/polylog)-
approximate max-flow on instances of total size O(m)

Cyclic dependency! Resolved by [Peng '16] using recursive
graph sparsification. Complicated algorithm

This work: polylog-quality congestion approximator without
recursive max-flow

Our Congestion Approximator Construction
Theorem: Consider partitions Pyi PouePp of V s.t.

Our Congestion Approximator Construction
Theorem: Consider partitions Py Poue P of V s.t.

(1) P1={{v}:veV} Is singletons and PL={V} Is single cluster

Our Congestion Approximator Construction
Theorem: Consider partitions Pyi Poue P of V s.t.

(1) P1={{v}:veV} Is singletons and PL={V} Is single cluster

(2) For each | and each cluster CePi+1,
aPi N E[C] U dC "mixes" in G[C] o

with congestion polylog Py Pa

Our Congestion Approximator Construction
Theorem: Consider partitions Py Poue P of V s.t.

(1) P1={{v}:veV} Is singletons and PL={V} Is single cluster

(2) For each i and each cluster CeP;_ 4,

oP; N E[C] U oaC "mixes" in G[C] o

with congestion polylog P, P
(3) For each |, there is a flow dP;_ 1 —0dP;

with congestion polylog s.t.

each ecP; sends 1 flow and
each ec PI +1 receives <=1/2 flow

Our Congestion Approximator Construction
Theorem: Consider partitions Py Poue P of V s.t.

(1) P1={{v}:veV} Is singletons and PL={V} Is single cluster

(2) For each i and each cluster CeP;_ 4,

oP; N E[C] U 9C "mixes" in G[C] o

with congestion polylog P, P
(3) For each |, there is a flow dP;_ 1 —0dP;

with congestion polylog s.t.

each ecP; sends 1 flow and i=2
each ec PI .1 receives <=1/2 flow Py Pa

Our Congestion Approximator Construction
Theorem: Consider partitions Py Poue P of V s.t.

(1) P1={{v}:veV} Is singletons and PL={V} Is single cluster

(2) For each | and each cluster CeP;i_ 4.
dP; N E[C] U oC "mixes" in G[C] o
with congestion polylog P
(3) For each |, there is a flow dP;, 1—dP;
with congestion polylog s.t. ‘
1=2

each ecP; sends 1 flow and
each ec PI +1 receives <=1/2 flow

Our Congestion Approximator Construction
Theorem: Consider partitions Py Poue P of V s.t.

(1) P1={{v}:veV} Is singletons and PL={V} Is single cluster

(2) For each | and each cluster CeP;

I+1’
oP; N E[C] U oC 'mixes" in GIC] i=2

with CongeStion Actual: slightly weaker -
(3) For each |, there is a flow dP;, 1—dP;
with congestion polylog s.t.

each ecP; sends 1 flow and =2
each ec PI +1 receives <=1/2 flow

Our Congestion Approximator Construction
Theorem: Consider partitions Pyi Poue P of V s.t.

(1) P1={{v}:veV} Is singletons and PL={V} Is single cluster

(2) For each | and each cluster CeP;_ 4, (/

oP; N E[C] U dC "mixes" in G[C] =1
With CongeStion Actual: slightly weaker

(3) For each |, there is a flow dP;, 1—dP;
with congestion polylog s.t.

each ecP; sends 1 flow and =2
each ec PI +1 receives <=1/2 flow

Our Congestion Approximator Construction
Theorem: Consider partitions Pyi Poue P of V s.t.

(1) P1={{v}:veV} Is singletons and PL={V} Is single cluster

—

(2) For each | and each cluster CeP;_ 4, is an expander

oP; N E[C] U dC "mixes" in G[C] =1

With CongeStion Actual: slightly weaker
(3) For each |, there is a flow dP; 1—0dP;

with congestion polylog s.t.

each ecP; sends 1 flow and =
each ec PI +1 receives <=1/2 flow

Our Congestion Approximator Construction
Theorem: Consider partitions Pyi PouPp of V s.t.

For each |, let R,—j be the
common refinement of
partitions PI' Pi+1' - PL

Then (= UiR . |S 3

>=]
congestion approximator

with quality polylog.

Our Congestion Approximator Construction
Theorem: Consider partitions Pyi Pou P of V s.t.

For each |, let R,—j be the
common refinement of P P
partitions PI' Pi+1' . PL -

Then (= UiR . |S 3

>=]
congestion approximator

with quality polylog.

Our Congestion Approximator Construction
Theorem: Consider partitions Pyi Pou P of V s.t.

For each |, let R,—j be the

common refinement of P
. P2 3
partltlons PI' Pi+1' ki PL
o O 9 tE’J.'J b
. — 00 o0 o © UD W, O :’
Then C = Ui R>=i IS a C O;)Do 000 : O U ODL—(OO D
congestion approximator ° R Res

>1

with quality polylog.

Constructing the Congestion Approximator

Ps Is an expander decomposition (doable)

Constructing the Congestion Approximator

Ps Is an expander decomposition (doable)

In general, use Pq, ..., Pi_j to construct P;

Constructing the Congestion Approximator

Ps Is an expander decomposition (doable)

In general, use Pq, ..., Pi_j to construct P;

Max-flow calls required, but use structure of
Py, ... P;_7 to build "pseudo"-congestion
approximator sufficient for the specialized
max-flow calls

Conclusion

Bottom-up congestion approximator construction,
In contrast to top-down of [Racke, Shah, Taubig '14]

Conclusion

Bottom-up congestion approximator construction,
In contrast to top-down of [Racke, Shah, Taubig '14]

No recursive max-flow required — cleaner algorithm

Conclusion

Bottom-up congestion approximator construction,
In contrast to top-down of [Racke, Shah, Taubig '14]

No recursive max-flow required — cleaner algorithm

Number of polylog factors still high (unspecified).
Open question: reduce number of polylog factors?

