Congestion-Approximators from the Bottom Up

Jason Li (CMU)
Joint with Satish Rao (Berkeley),
Di Wang (Google)

Given undirected (uncapacitated) graph G=(V,E) and vector b in \mathbb{R}^V with $\Sigma b_V=0$

Given undirected (uncapacitated) graph G=(V,E) and vector b in \mathbb{R}^{V} with $\Sigma b_{V}=0$

s-t max-flow:
$$b = 1_s - 1_t = \begin{bmatrix} +1 \\ 0 \\ \vdots \\ -1 \end{bmatrix} t$$

Given undirected (uncapacitated) graph G=(V,E) and vector b in \mathbb{R}^{V} with $\Sigma b_{V}=0$

s-t max-flow:
$$b = 1_s - 1_t = \begin{bmatrix} +1 \\ 0 \\ \vdots \\ -1 \end{bmatrix} t$$

Minimize congestion

= max amount of flow sent along any edge

Given undirected (uncapacitated) graph G=(V,E) and vector b in \mathbb{R}^{V} with $\Sigma b_{V}=0$

G=(V,E) and vector b in
$$\mathbb{R}^{V}$$
 with $\sum b_{V}=0$
s-t max-flow: b = $\mathbb{I}_{S} - \mathbb{I}_{t} = \begin{bmatrix} +1 \\ 0 \\ \vdots \\ -1 \end{bmatrix}_{t}$ b = $\mathbb{I}_{S} - \mathbb{I}_{t}$

Minimize congestion

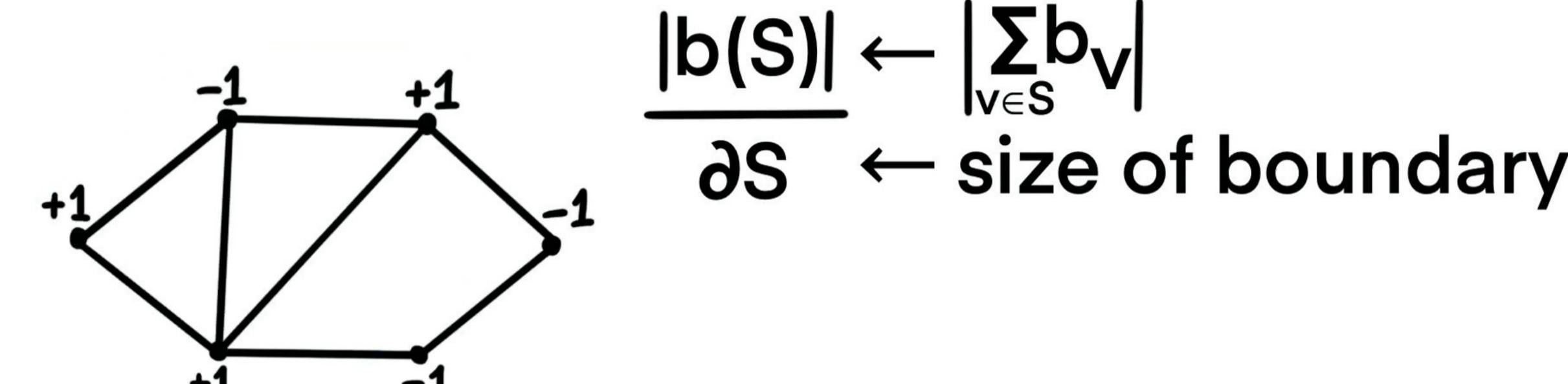
= max amount of flow sent along any edge

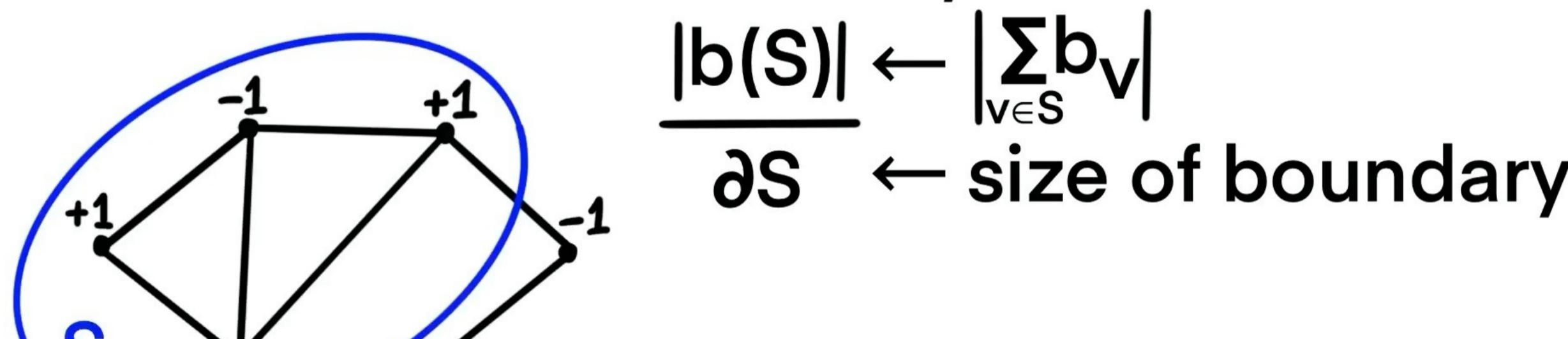
Given undirected (uncapacitated) graph

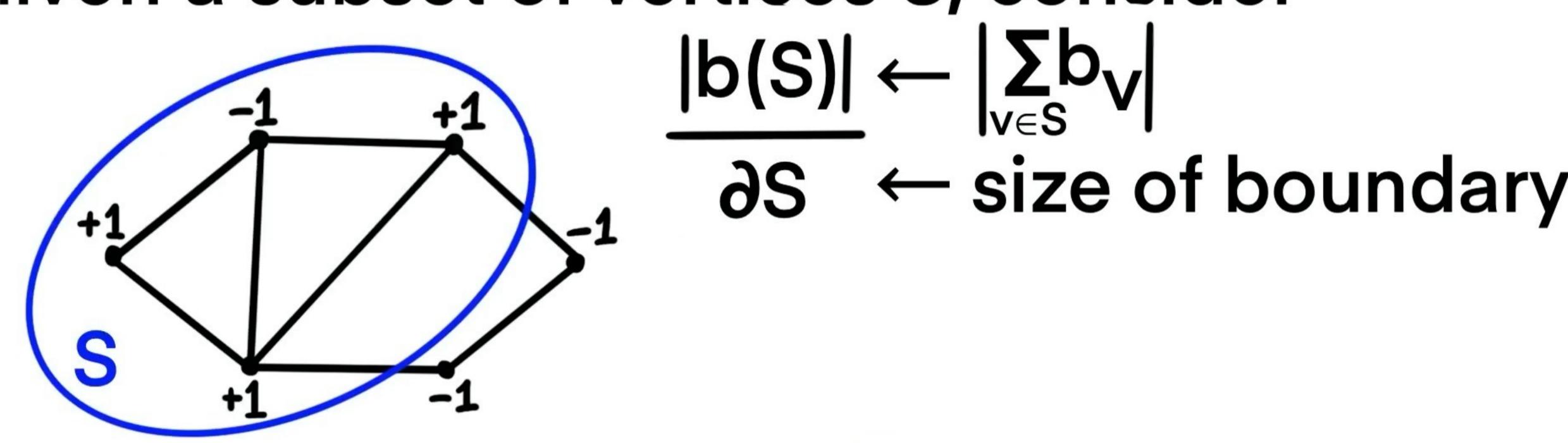
G=(V,E) and vector b in
$$\mathbb{R}^V$$
 with $\sum b_V=0$
s-t max-flow: b = $\mathbb{I}_S - \mathbb{I}_t = \begin{bmatrix} +1 \\ 0 \\ \vdots \\ -1 \end{bmatrix}_t$ b = $\mathbb{I}_S - \mathbb{I}_t$
Minimize congestion congestion = 1/3

= max amount of flow sent along any edge

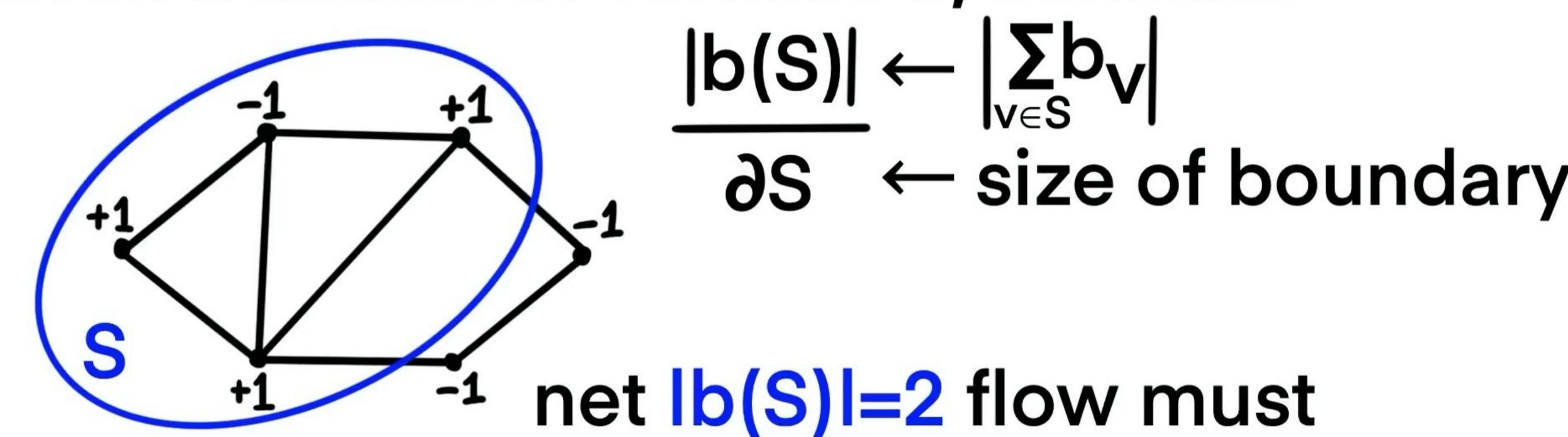
$$\frac{|b(S)|}{|b(S)|} \leftarrow |\sum_{v \in S} b_v|$$
∂S ← size of boundary







$$lb(S)l=2$$



Flow/Cut Duality For any S, congestion >= $\frac{|b(S)|}{\partial S}$

For any S, congestion >=
$$\frac{|b(S)|}{\partial S}$$

Flow/Cut Duality: congestion =
$$\max_{S \subseteq V} \frac{|b(S)|}{\partial S}$$

For any S, congestion >=
$$\frac{|b(S)|}{\partial S}$$

Flow/Cut Duality: congestion = $\max_{S \subseteq V} \frac{|b(S)|}{\partial S}$ Congestion Approximator:

family \mathcal{C} of subsets S s.t. |k| congestion <= $\alpha \cdot \max$

congestion
$$\leftarrow$$
 $\alpha \cdot \max_{\beta \in \mathcal{C}} \frac{\beta (S)}{\partial S}$
quality

For any S, congestion >=
$$\frac{|b(S)|}{\partial S}$$

Flow/Cut Duality: congestion =
$$\max_{S \subseteq V} \frac{|b(S)|}{\partial S}$$

Congestion Approximator:

Congestion Approximator:

family C of subsets S s.t.

congestion
$$\leftarrow$$
 $\propto \cdot \max_{A} \frac{|b(S)|}{\partial S}$ for all demands be quality $S \in \mathcal{C}$ ∂S (b(V)=0)

[Sherman '13, '17] Given polylog-quality congestion approximator, can solve (1+ε)-approximate congestion in Õ(m/ε) with Õ(m) representation size

[Sherman '13, '17] Given polylog-quality congestion approximator, can solve (1+ε)-approximate congestion in Õ(m/ε) with Õ(m) representation size [Räcke, Shah, Taubig '14] Can compute polylog-quality congestion approximator by computing (1+1/polylog)-approximate max-flow on instances of total size Õ(m)

[Sherman '13, '17] Given polylog-quality congestion approximator, can solve (1+ε)-approximate congestion in Õ(m/ε) with Õ(m) representation size [Räcke, Shah, Taubig '14] Can compute polylog-quality congestion approximator by computing (1+1/polylog)-approximate max-flow on instances of total size Õ(m)

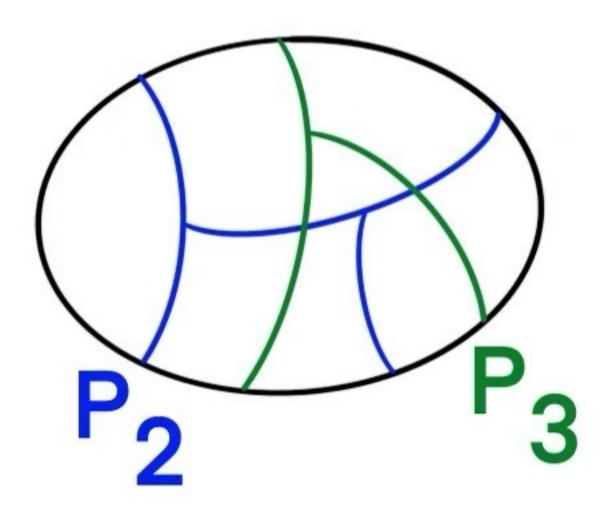
Cyclic dependency! Resolved by [Peng '16] using recursive graph sparsification. Complicated algorithm

[Sherman '13, '17] Given polylog-quality congestion approximator, can solve (1+ε)-approximate congestion in Õ(m/ε) with Õ(m) representation size [Räcke, Shah, Taubig '14] Can compute polylog-quality congestion approximator by computing (1+1/polylog)-approximate max-flow on instances of total size Õ(m)

Cyclic dependency! Resolved by [Peng '16] using recursive graph sparsification. Complicated algorithm

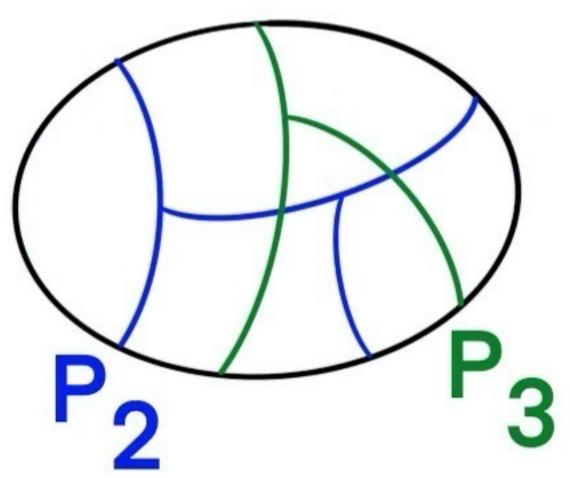
This work: polylog-quality congestion approximator without recursive max-flow

Our Congestion Approximator Construction Theorem: Consider partitions B. B. of Vest



Theorem: Consider partitions P₁, P₂,...P₁ of V s.t.

(1) $P_1 = \{\{v\}: v \in V\}$ is singletons and $P_L = \{V\}$ is single cluster



Theorem: Consider partitions P₁, P₂,...P_L of V s.t.

(1) $P_1 = \{\{v\}: v \in V\}$ is singletons and $P_L = \{V\}$ is single cluster

(2) For each i and each cluster $C \in P_{i+1}$, $\partial P_i \cap E[C] \cup \partial C$ "mixes" in G[C] i=2 with congestion polylog

- (1) $P_1 = \{\{v\}: v \in V\}$ is singletons and $P_L = \{V\}$ is single cluster
- (2) For each i and each cluster $C \in P_{i+1}$, $\partial P_i \cap E[C] \cup \partial C$ "mixes" in G[C] i=2 with congestion polylog
- (3) For each i, there is a flow ∂P_{i+1}→∂P_i with congestion polylog s.t. each e∈P_i sends 1 flow and each e∈P_{i+1} receives <=1/2 flow</p>

- (1) $P_1 = \{\{v\}: v \in V\}$ is singletons and $P_L = \{V\}$ is single cluster
- (2) For each i and each cluster $C \in P_{i+1}$, $\partial P_i \cap E[C] \cup \partial C$ "mixes" in G[C] i=2 with congestion polylog
- (3) For each i, there is a flow $\partial P_{i+1} \rightarrow \partial P_i$ with congestion polylog s.t.
 - each $e \in P_i$ sends 1 flow and each $e \in P_{i+1}$ receives <=1/2 flow

- (1) $P_1 = \{\{v\}: v \in V\}$ is singletons and $P_L = \{V\}$ is single cluster
- (2) For each i and each cluster C∈P_{i+1},
 ∂P_i ∩ E[C] U ∂C "mixes" in G[C] i=2
 with congestion polylog
- (3) For each i, there is a flow ∂P_{i+1}→∂P_i with congestion polylog s.t. each e∈P_i sends 1 flow and i=2 each e∈P_{i+1} receives <=1/2 flow</p>

- (1) $P_1 = \{\{v\}: v \in V\}$ is singletons and $P_L = \{V\}$ is single cluster
- (2) For each i and each cluster C∈P_{i+1},
 ∂P_i ∩ E[C] U ∂C "mixes" in G[C],
 with congestion Actual slightly weaker
- (3) For each i, there is a flow $\partial P_{i+1} \rightarrow \partial P_i$ with congestion polylog s.t.
 - each $e \in P_i$ sends 1 flow and each $e \in P_{i+1}$ receives <=1/2 flow

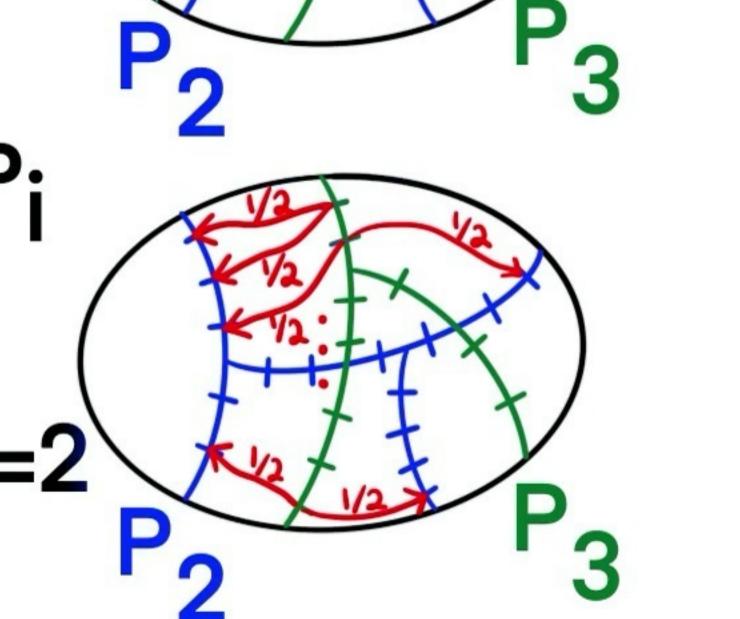
- (1) $P_1 = \{\{v\}: v \in V\}$ is singletons and $P_L = \{V\}$ is single cluster
- (2) For each i and each cluster C∈P_{i+1},
 ∂P_i ∩ E[C] U ∂C "mixes" in G[C], i=1
 with congestion Actual slightly weaker
- (3) For each i, there is a flow $\partial P_{i+1} \rightarrow \partial P_i$ with congestion polylog s.t. each $e \in P_i$ sends 1 flow and i=2 each $e \in P_{i+1}$ receives <=1/2 flow

Theorem: Consider partitions P₁, P₂,...P₁ of V s.t.

- (1) $P_1 = \{\{v\}: v \in V\}$ is singletons and $P_L = \{V\}$ is single cluster
- (2) For each i and each cluster $C \in P_{i+1}$, $\partial P_i \cap E[C] \cup \partial C$ "mixes" in G[C], i=1 with congestion Actual: slightly weaker

(3) For each i, there is a flow ∂P_{i+1}→∂P_i with congestion polylog s.t.

each $e \in P_i$ sends 1 flow and each $e \in P_{i+1}$ receives <=1/2 flow



is an expander

Theorem: Consider partitions P₁, P₂,...P_L of V s.t.

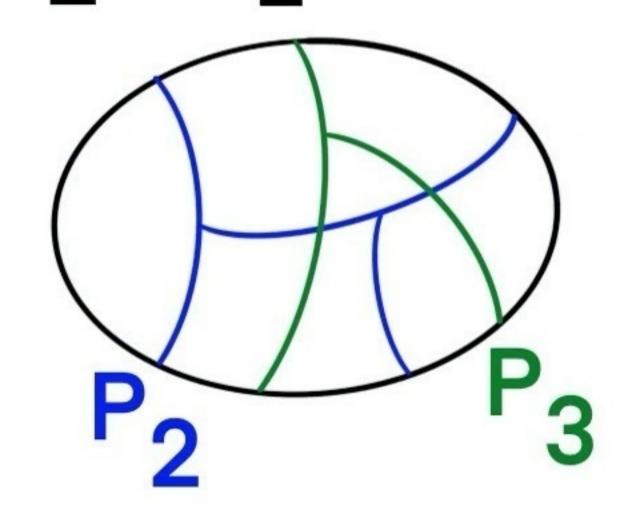
For each i, let $R_{>=i}$ be the common refinement of partitions P_i , P_{i+1} , ..., P_l

Then $C = U_i R_{>=i}$ is a congestion approximator with quality polylog.

Theorem: Consider partitions P₁, P₂,...P_L of V s.t.

:

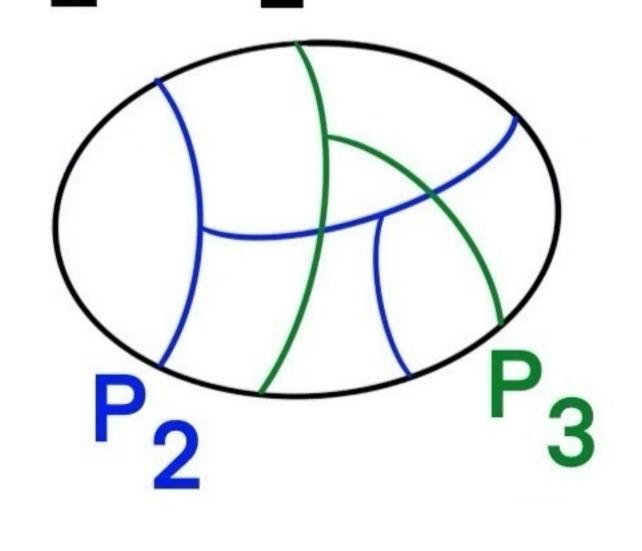
For each i, let $R_{>=i}$ be the common refinement of partitions P_i , P_{i+1} , ..., P_L



Then $C = U_i R_{>=i}$ is a congestion approximator with quality polylog.

Theorem: Consider partitions P₁, P₂,...P₁ of V s.t.

For each i, let R_{>=i} be the common refinement of partitions P_i, P_{i+1}, ..., P_l



with quality polylog.

Constructing the Congestion Approximator

P₂ is an expander decomposition (doable)

Constructing the Congestion Approximator

P2 is an expander decomposition (doable)

In general, use P_1 , ..., P_{i-1} to construct P_i

Constructing the Congestion Approximator

P2 is an expander decomposition (doable)

In general, use P₁, ..., P_{i-1} to construct P_i Max-flow calls required, but use structure of P₁, ..., P_{i-1} to build "pseudo"-congestion approximator sufficient for the specialized max-flow calls

Conclusion

Bottom-up congestion approximator construction, in contrast to top-down of [Räcke, Shah, Taubig '14]

Conclusion

Bottom-up congestion approximator construction, in contrast to top-down of [Räcke, Shah, Taubig '14]

No recursive max-flow required → cleaner algorithm

Conclusion

Bottom-up congestion approximator construction, in contrast to top-down of [Räcke, Shah, Taubig '14]

No recursive max-flow required → cleaner algorithm

Number of polylog factors still high (unspecified). Open question: reduce number of polylog factors?