Detecting Feedback Vertex Sets

of Size kin O*(2.7Ak) Time
Jason Li

With Jesper Nederlof (Utrecht Univ., Netherlands)

May 7, 2020

Introduction

Def: given a graph G, a feedback vertex set (FVS) is
a set F of vertices s.t. G-F Is a forest
Equivalently, F hits all cycles of G

Introduction

Def: given a graph G, a feedback vertex set (FVS) is
a set F of vertices s.t. G-F Is a forest
Equivalently, F hits all cycles of G

Parameterized by k: given a graph G, find a
FVS of size k In G or determine that none exist

Introduction

Def: given a graph G, a feedback vertex set (FVS) is
a set F of vertices s.t. G-F Is a forest
Equivalently, F hits all cycles of G

Parameterized by k: given a graph G, find a
FVS of size k In G or determine that none exist

Want time FPT in k: f(k)*poly(n)
Goal in FPT setting: minimize function f(k).
poly(n) factor does not matter

Prior Work

Downey and Fellows ‘92: f(k) = k°%

Becker et al. [BBG'00]: f(k)=4Ak, randomized
Cygan et al. [CNP+'11]: f(k)=3Ak, randomized
- actually runs in 3Atw time, given a tree decomposition of width tw

Kociumaka and Pilipczuk ‘14: f(k)=3.62Ak deterministic

Prior Work

Downey and Fellows ‘92: f(k) = k°%

Becker et al. [BBG'00]: f(k)=4Ak, randomized
Cygan et al. [CNP+'11]: f(k)=3Ak, randomized
- actually runs in 3Atw time, given a tree decomposition of width tw

Kociumaka and Pilipczuk ‘14: f(k)=3.62Ak deterministic

Our result: f(k)=2.7Ak randomized.
Conceptual message: 3Ak barrier can be broken
Combines techniques from [BBG'00] and [CNP+11].

Prior Work

Downey and Fellows ‘92: f(k) = k°%

Becker et al. [BBG'00]: f(k)=4Ak, randomized
Cygan et al. [CNP+'11]: f(k)=3Ak, randomized
- actually runs in 3Atw time, given a tree decomposition of width tw

Kociumaka and Pilipczuk ‘14: f(k)=3.62Ak deterministic

Our result: f(k)=2.7Ak randomized.

Conceptual message: 3Ak barrier can be broken
Combines techniques from [BBG'00] and [CNP+11].
This talk: (3-£)Ak, or how to break 3Ak.

Common Reductions

- Reduction Rule: (G, k) —> (G, k') where G has size-k FVS iff
G’ has size-k' FVS

Common Reductions
- Reduction Rule: (G, k) —> (G, k') where G has size-k FVS iff

G’ has size-k' FVS
(1) Self-loop at v: Q@

Common Reductions

- Reduction Rule: (G, k) —> (G, k') where G has size-k FVS iff
G’ has size-k' FVS

(1) Self-loop at v: Must select vin FVS
» (G, k) —> (G-v, k-1)

Common Reductions

- Reduction Rule: (G, k) —> (G, k') where G has size-k FVS iff
G’ has size-k' FVS

(1) Self-loop at v: Must select vin FVS
V (G, k) _> (G-V, k'].)

Remove v and decrease k by 1

Common Reductions

- Reduction Rule: (G, k) —> (G, k') where G has size-k FVS iff
G’ has size-k' FVS

(1) Self-loop at v: Must select v in FVS
V (G, k) — > (G-V, k'].)
Remove v and decrease k by 1

(2) Leaf vertex v (degree 1): C-v
V

Common Reductions

- Reduction Rule: (G, k) —> (G, k') where G has size-k FVS iff
G’ has size-k' FVS

(1) Self-loop at v: Must select v in FVS
, (G, k) —> (G-v, k-1)

Remove v and decrease k by 1

(2) Leaf vertex v (degree 1): c-v) Vdoesntbelonginany cycle
V Remove v: (G, k) —> (G-v, k)

Common Reductions

- Reduction Rule: (G, k) —> (G, k') where G has size-k FVS iff
G’ has size-k' FVS

(1) Self-loop at v: Must select v in FVS
, (G, k) —> (G-v, k-1)

Remove v and decrease k by 1

(2) Leaf vertex v (degree 1): c-v) Vdoesntbelonginany cycle
V Remove v: (G, k) —> (G-v, k)

(3) Degree-2 vertex v: m

Common Reductions

- Reduction Rule: (G, k) —> (G, k') where G has size-k FVS iff
G’ has size-k' FVS

(1) Self-loop at v: Must select v in FVS
o (G, k) —> (G-v, k-1)

Remove v and decrease k by 1

(2) Leaf vertex v (degree 1): c-v) Vdoesntbelonginany cycle
V Remove v: (G, k) —> (G-v, k)

(3) Degree-2 vertex v: u“—"—‘v w Any cycle containing v also contains u
If select v in FVS, then might as well
select u instead

Common Reductions

- Reduction Rule: (G, k) —> (G, k') where G has size-k FVS iff
G’ has size-k' FVS

(1) Self-loop at v: Must select v in FVS
V (G, k) _> (G-V, k'].)

Remove v and decrease k by 1

(2) Leaf vertex v (degree 1): c-v) Vdoesntbelonginany cycle
V Remove v: (G, k) —> (G-v, k)

(3) Degree-2 vertex v: m Any cycle containing v also contains u
\L If select v in FVS, then might as well

select u instead
. o Delete vand add edge (uw)

Common Reductions
- Reduction Rule: (G, k) —> (G, k') where G has size-k FVS iff

G’ has size-k' FVS
(1) Self-loop at v: @
Vv

(2) Leaf vertex v (degree 1): c-v) Vdoesntbelonginany cycle
V Remove v: (G, k) —> (G-v, k)

When (1),(2),(3) no longer apply:
- no self-loops
- minimum degree 3

(3) Degree-2 vertex v: m Any cycle containing v also contains u
\L If select v in FVS, then might as well

select u instead
. o Delete vand add edge (uw)

Becker et al. Reduction

- Reduction Rule: (G, k) —> (G, k') where G has size-k FVS iff
G’ has size-k' FVS

Becker et al. Reduction

- Reduction Rule: (G, k) —> (G, k') where G has size-k FVS iff
G’ has size-k' FVS
- Probabilistic Reduction: (G, k) —> (G; k') where
with probability p, G has size-k FVS iff G’ has size-k’' FVS

Becker et al. Reduction

- Reduction Rule: (G, k) —> (G, k') where G has size-k FVS iff
G’ has size-k' FVS
- Probabilistic Reduction: (G, k) —> (G; k') where
with probability p, G has size-k FVS iff G’ has size-k’ FVS

Becker et al. [BBG'00]: sample v proportional to deg(v)

Becker et al. Reduction

- Reduction Rule: (G, k) —> (G, k') where G has size-k FVS iff
G’ has size-k' FVS
- Probabilistic Reduction: (G, k) —> (G; k') where
with probability p, G has size-k FVS iff G’ has size-k' FVS
Becker et al. [BBG'00]: sample v proportional to deg(v)
Add v to FVS: (G, k) -> (G-v, k-1)

Becker et al. Reduction

- Reduction Rule: (G, k) —> (G, k') where G has size-k FVS iff
G’ has size-k' FVS
- Probabilistic Reduction: (G, k) —> (G, k') where
with probability p, G has size-k FVS iff G’ has size-k' FVS

Becker et al. [BBG'00]: sample v proportional to deg(v)
Add v to FVS: (G, k) -> (G-v, k-1)

Theorem: if G has minimum degree =3

and a FVS of size k, then with probability

>1/4, vis In the FVS

Becker et al. Reduction

- Reduction Rule: (G, k) —> (G, k') where G has size-k FVS iff
G’ has size-k' FVS
- Probabilistic Reduction: (G, k) —> (G; k') where
with probability p, G has size-k FVS iff G’ has size-k' FVS
Becker et al. [BBG'00]: sample v proportional to deg(v)
Add v to FVS: (G, k) -> (G-v, k-1)
Theorem: if G has minimum degree >3 Tight: <=l -n%00

and a FVS of size k, then with probability m

>1/4, v is in the FVS 3 i;f,mﬁ; otk

Becker et al. Reduction

- Reduction Rule: (G, k) —> (G, k') where G has size-k FVS iff
G’ has size-k' FVS
- Probabilistic Reduction: (G, k) —> (G; k') where
with probability p, G has size-k FVS iff G’ has size-k’' FVS
Becker et al. [BBG'00]: sample v proportional to deg(v)
Add v to FVS: (G, k) -> (G-v, k-1)
Theorem: if G has minimum degree >3 Tight: <=-n%00

and a FVS of size k, then with probability m

~1/4, v is in the FVS M3 ot ey tno :
Prob. 1/4 to decrease k by 1 and preserve reduction
=> prob. 1/4Ak to go all the way. Repeat 4Ak times: O*(4Ak) algo.

Our Approach

Dense case: m >> O(k):

Sparse case: m < O(k):

Our Approach

Dense case: m >> O(k):
- Modify [BBG'00]: sample v with prob. ~ deg(v)-3

Sparse case: m < O(k):

Our Approach

Dense case: m >> O(k):
- Modify [BBG 00] sample v with prob. ~ deg(v)-3

/ﬂ‘:\:O(‘) k l‘/.n-i'O(l)

ZANSS 7 NSNSl

dg: 333 3 dyd: 000

Sparse case: m < O(k):

Our Approach

Dense case: m >> O(k):
- Modify [BBG 00] sample v with prob. ~ deg(v)-3

/ﬂ‘:\:O(‘) k)/.n-!'O(l)

: 333 .- 3 dyd: 000
Lemma If m = 100k, then reduction succeeds w.p. 1/2.99

Repeat k times => 2.99Ak algo
Sparse case: m < O(k):

Our Approach

Dense case: m >> O(k):
- Modify [BBG 00] sample v with prob. ~ deg(v)-3

/ﬂ:\:O(‘) k)/.n-l'()(l)

dy: 333 3 dyd: 000
Lemma: if m = 100k, then reduction succeeds w.p. 1/2.99

Repeat k times => 2.99Ak algo
Sparse case: m < O(k):
Lemma: if m < 100k and exists FVS size k, then

G has treewidth (1-Q(1))k

Our Approach

Dense case: m >> O(k):
- Modify [BBG 00] sample v with prob. ~ deg(v)-3

/ﬂ:\:O(l) k)/.n-!'()(l)

dy: 333 3 dyd: 000
Lemma: if m = 100k, then reduction succeeds w.p. 1/2.99

Repeat k times => 2.99Ak algo
Sparse case: m < O(k):
Lemma: if m < 100k and exists FVS size k, then

G has treewidth (1-Q(1))k

Can find such a tree decomposition. Run 3Atw algo [CNP+11]

Our Approach

Dense case: m >> O(k):
- Modify [BBG 00] sample v with prob. ~ deg(v)-3

/ﬂ:\:O(‘) k)/.n-!'()(l)

: 333 - 3 dyd: 000
Lemma If m = 100k, then reduction succeeds w.p. 1/2.99

Repeat k times => 2.99Ak algo
Sparse case: m < O(k):
Lemma: if m < 100k and exists FVS size k, then :
G has treewidth (1-Q(1))k 5 time G E)

Can find such a tree decomposition. Run 3Atw algo [CNP+11]

Dense case: m >> O(k)

Dense case: m >> O(k)

Lemma [BBG'00]: if sample v with prob. ~ deg(v), then sample v in FVS
with prob. >= 1/4
Proof:

Dense case: m >> O(k)

Lemma [BBG'00]: if sample v with prob. ~ deg(v), then sample v in FVS

with prob. >= 1/4 <=> sample random edge,
Proof: then random endpoint

Dense case: m >> O(k)

Lemma [BBG'00]: if sample v with prob. ~ deg(v), then sample v in FVS

with prob. >= 1/4 <=> sample random edge,
Proof:) FVS then random endpoint

3]/_\ Acyclic: average degree <=2

o o P _
=
(min deg 3) W O 6\

Dense case: m >> O(k)

Lemma [BBG'00]: if sample v with prob. ~ deg(v), then sample v in FVS

with prob. >= 1/4 <=> sample random edge,
Proof: —— 5) TVS then random endpoint

| P 4 A A X J.\
, / ‘\\ Acyclic: average degree <= 2
\ Must add >= 1 edge per

- \ FVS vertex in G\FVS on average
(min deg 3) /, v N | G

I
J — — B

‘———’

Dense case: m >> O(k)

Lemma [BBG'00]: if sample v with prob. ~ deg(v), then sample v in FVS

with prob >=1/4 <=>sample random edge,
5) FVS then random endpoint

' ,' /Al' ‘\ Acyclic: average degree <=2
Must add >= 1 edge per
' 7 - \ 6\ FVS vertex in G\FVS on average
(min deg 3) " ; Acyclic: <=1 edge in G\FVS per

7 vertex in G\FVS on average

Proof:

Dense case: m >> O(k)

Lemma [BBG'00]: if sample v with prob. ~ deg(v), then sample v in FVS

with prob. >= 1/4 <=> sample random edge,

Proof: T EaN Nk VS then random endpoint

/
' , / ‘\k Acyclic: average degree <=2
f \ Must add >= 1 edge per

' 6\ FVS vertex in G\FVS on average
(min deg 3) " B ” Acyclic: <=1 edge in G\FVS per

7 N vertex in G\FVS on average

B Sample blue w.p. >=1/2, then sample v in FVS w.p. 1/2 => 1/4 overall

Dense case: m >> O(k)

Lemma [BBG'00]: if sample v with prob. ~ deg(v), then sample v in FVS
with prob. >= 1/4 <=> sample random edge,

Proof: 2k RO)TVS then random endpoint

2 LA A 4\
' ’ / ‘\\ Acyclic: average degree <=2
_.3\ G\ F\IS| | \: Must add >= 1 edge per

‘V < 6\ FVS vertex in G\FVS on average
(min deg 3) " p - Acyclic: <=1 edge in G\FVS per

p I vertex in G\FVS on average

B Sample blue w.p. >=1/2, then sample v in FVS w.p. 1/2 => 1/4 overall
Sample v with prob. ~ deg(v) - 3 ?

Dense case: m >> O(k)

Lemma [BBG'00]: if sample v with prob. ~ deg(v), then sample v in FVS
with prob >=1/4 <=>sample random edge,

Proof: K[5) FVS then random endpoint

|2 /A \

, / ‘\ ?? Acyclic: average degree <= 2

_3\6\ FV5| . _ \Mustadd >=1 edge per
- 6\ FVS vertex in G\FVS on average

(min deg 3) }' p - ' Acyclic: <=1 edge in G\FVS per

7 I vertex in G\FVS on average

B Sample blue w.p. >=1/2, then sample v in FVS w.p. 1/2 => 1/4 overall
Sample v with prob. ~ deg(v) - 3 ?
o Suppose m >= 10n (high average degree)...

Dense case: m >> O(k)

Lemma [BBG'00]: if sample v with prob. ~ deg(v), then sample v in FVS
with prob. >= 1/4 <=> sample random edge,

g 5) TV S then random endpoint

B 3 ‘
| “, ll . 1\ N _
3|6\ Fv$| '/,"{‘!E' .\\ f‘,‘z‘;il'ac = i";ig; :zgerree 2

Proof: 2k

W
\
e

6\ FVS vertex in G\FVS on average
- Acyclic: <=1 edge in G\FVS per
— vertex in G\FVS on average
8/ °

B Sample blue w.p. >=)#Z, then sample vin FVS w.p. 1/2 => 1/4 overall
Sample v with prob. ~ deg(v) 75?
o Suppose m >= 10n (high average degree)...Success prob >=1/2.99

Dense case: m >> O(k)

Lemma [BBG'00]: if sample v with prob. ~ deg(v), then sample v in FVS
with prob. >= 1/4 <=> sample random edge,

Proof: K[2 A D) FVS then random endpoint

2 LA T b _
vl A ‘\\~: o mpgndge =

6\ FVS vertex in G\FVS on average
Acyclic: <=1 edge in G\FVS per

— vertex in G\FVS on average

8/ °

B Sample blue w.p. >=)#Z, then sample vin FVS w.p. 1/2 => 1/4 overall
Sample v with prob. ~ deg(v) 75?

o Suppose m >= 10n (high average degree)...Success prob >=1/2.99
e Suppose n >= 10k (many vertices)...

Dense case: m >> O(k)

Lemma [BBG'00]: if sample v with prob. ~ deg(v), then sample v in FVS
with prob >=1/4 <=>sample random edge,

Proof: X777 A 5) TV S then random endpoint
' ."_%‘m-ho .\ ?? Acyclic: average degree <= 2
_3\ G\ F\ISl -] \ Must add >=,I%dge per

- 6\ FVS vertex in G\FVS on average
29k | VN "ol -
F Acyclic: <=1 edge in G\FVS per

— vertex in G\FVS on average
'8/9 >

Sample blue w.p. >=)#Z, then sample v in FVS w.p. 1/2 => 1/4 overall
Sample v with prob. ~ deg(v) 73?

o Suppose m >= 10n (high average degree)...Success prob >=1/2.99
e Suppose n >= 10k (many vertices)... Success prob >=1/2.99

Dense case: m >> O(k)

Lemma [BBG'00]: if sample v with prob. ~ deg(v), then sample v in FVS
with prob. >= 1/4 <=> sample random edge,

Proof: W77 PA_FS o) TV S then random endpoint
AN

' :.%mﬁo | \ Acyclic: average degree <= 2
_3\ 6\ FV5| ' ’ ,, > Must add >=,I%dge per
R ,_"/‘! < 6\ FVS vertexin G\FVS on average
29k /, p - ' Acyclic: <=1 edge in G\FVS per
B -; /9 vertex in G\FVS on average

B Sample blue w.p. >=)#Z, then sample vin FVS w.p. 1/2 => 1/4 overall
Sample v with prob. ~ deg(v) 73?
o Suppose m >= 10n (high average degree)...Success prob >=1/2.99

e Suppose n >= 10k (many vertices)... Success prob >=1/2.99
If m >= 100k, then either m >=10n or n >= 10k, so success prob >=1/2.99

Iterative Compression

Original problem: given graph G, find FVS size k, or determine
none exist.

Iterative Compression

Original problem: given graph G, find FVS size k, or determine
none exist.

Iterative Compression reduces to: given graph G and FVS size
(k+1), find FVS size k or determine none exist.

Iterative Compression

Original problem: given graph G, find FVS size k, or determine
none exist.

Iterative Compression reduces to: given graph G and FVS size
(k+1), find FVS size k or determine none exist.

- Get size (k+1) FVS as input for free

Iterative Compression

Original problem: given graph G, find FVS size k, or determine
none exist.

Iterative Compression reduces to: given graph G and FVS size
(k+1), find FVS size k or determine none exist.

- Get size (k+1) FVS as input for free

ldea: If Si IS FVS of size k to G[{vl,...,vi}], then

SiU{Vi+1} IS FVS of size k+1 for G[{vl,...,v }

1+1

Iterative Compression

Original problem: given graph G, find FVS size k, or determine
none exist.

Iterative Compression reduces to: given graph G and FVS size
(k+1), find FVS size k or determine none exist.

- Get size (k+1) FVS as input for free

ldea: If Si IS FVS of size k to G[{vl,...,vi}], then

SiU{Vi +1} IS FVS of size k+1 for G[{Vl""'vi+1
Solve on (G[{vl,...,vi +1}], S;U{v;_1}) to get
FVS S; .1 of size k on G[{V].""'Vi +1}]. Repeat

}]

Sparse case

Lemma: Given a graph with m < 100k, and given a
FVS of size k+1,

Sparse case

Lemma: Given a graph with m < 100k, and given a
FVS of size k+1, we can decompose the graph into:

Sq)urodvr Si2e (l-:li)k) Saparajes fett and r‘fah’c

Sparse case

Lemma: Given a graph with m < 100k, and given a
FVS of size k+1, we can decompose the graph into:

Sq)urodvr SiZe (l-:li)k) Szparajes e}t and r‘fah’c

Claim: a graph with this decomposition has treewidth (1-Q(1))k
Proof:

Sparse case

Lemma: Given a graph with m < 100k, and given a
FVS of size k+1, we can decompose the graph into:

g‘\ 1¢

sgparu:}es Lot and rfaH'

Seg)uroth:r Si2e -Qi)k)

Claim: a graph with this decomposition has treewidth (1-Q(1))k

(/)= 4 (Forest)

Sparse case

Lemma: Given a graph with m < 100k, and given a
FVS of size k+1, we can decompose the graph into:

g‘\ 1e

’cw(< A+ek (forest + ek verfices)
bw (6) € A+ek+ (1-20k (add fost (\2e)k verbias)
— (1-QO (1)K

Sparse case

Lemma: Given a graph with m < 100k, and given a_| Proof of Lemma:
FVS of size k+1, we can decompose the graph into: YR

L2 20 89 3 € FVS, size k+l

¥
- Y
= :

Se.?u(‘a.‘br‘ SiZe (l—:li)k) Sf.{mru:}es Lett and r‘fah’c

Sparse case

Lemma: Given a graph with m < 100k, and given a_| Proof of Lemma:
EVS of size k+1, we can decompose the graph into: A

' 2 38 FVS, size k+
D size €K A
J I 4

IFeN
| - 4\ Y—+ | Forest

E — ﬂ (i) Step 1: remove t=0(k) vertices from forest s.t.
each remaining component is “small”. These are
added to separator

Separator Size (l—li)k) Sf.paru:}es Ledt and dﬁ“

Sparse case

Lemma: Given a graph with m < 100k, and given a | Proof of Lemma:

FVS of size k+1, we can decompose the graph into:

Separator Size (l—li)k) Sf.paru:}es Ledt and dﬁ“

‘AIA

A ‘V\le‘ FVS, size k+

U forest

Step 1: remove t—o(k) vertlces from forest s.t.
each remaining component is “small”. These are
added to separator

Step 2: for each component, color red/blue

w.p. 1/2 each

FVS of size k+1, we can decompose the graph into:

Searactor Size (1-2€)k,

Sparse case

Lemma: Given a graph with m < 100k, and given a | Proof of Lemma:

sf.garu:}es feit and rfaH'

A'?‘?s;ﬁ.‘ Size Kk+|

U forest

Step 1: remove t=0(k) vertices from forest s.t.
each remaining component is “small”. These are
added to separator

Step 2: for each component, color red/blue
w.p. 1/2 each

Sparse case

Lemma: Given a graph with m < 100k, and given a | Proof of Lemma:

FVS of size k+1, we can decompose the graph into: ,ﬁ;ifi}‘ EVS, size kel
u h
Y & {\ ¢ 4) | forest

Step 1: remove t=0(k) vertices from forest s.t.
each remaining component is “small”. These are
added to separator

Step 2: for each component, color red/blue
w.p. 1/2 each

; — arajes RQ'H' ww‘ ‘. { Ll":' Step 3: Color each edge between FVS vertices
SE? ll('Cd"Dr SiZe (l Qi) k) S'QP 3 red/blue w.p. 1/2 each

Sparse case

Lemma: Given a graph with m < 100k, and given a | Proof of Lemma:

FVS of size k+1, we can decompose the graph into: L= "5“ FVS, size kel

Ay

Step 1: remove t—o(k) vertlces from forest s.t.
each remaining component is “small”. These are
added to separator

Step 2: for each component, color red/blue
w.p. 1/2 each

SE? ura‘h)r Si?e (l—li) k y SR.P&FI!J}Q S IQQ'\\' 'lf omc:\ (iah"ﬁ' Step 3: Color each edge between FVS vertices

red/blue w.p. 1/2 each

KA

orest

) 4 forest

Sparse case

Lemma: Given a graph with m < 100k, and given a | Proof of Lemma:
FVS of size k+1, we can decompose the graph into:

"HIN

dp'e

Step 1: remove t=o(k) vertlces from forest s.t.
each remaining component is “small”. These are
added to separator

Step 2: for each component, color red/blue
w.p. 1/2 each

SE? ura‘h)r Si2€ (l—li) k y SR.P&FGJ}Q S QQ"\' t anc\ ‘. lah{' Step 3: Color each edge between FVS vertices

red/blue w.p. 1/2 each

' l

FVS, size k+

| forest

Sparse case

Lemma: Given a graph with m < 100k, and given a | Proof of Lemma:
FVS of size k+1, we can decompose the graph into:

s ICIILE &
LI

Step 1: remove t=0(k) vertices from forest s.t.
each remaining component is “small”. These are
added to separator

Step 2: for each component, color red/blue
w.p. 1/2 each

' = aru:}es ,QQ‘H.‘ anc:\ ‘. { Ll"ﬁ' Step 3: Color each edge between FVS vertices
SQ? ura‘h)r‘ SiZe (l D‘i) k) SR'P 3 red/blue w.p. 1/2 each

FVS, si2e k+

h
- L]
. w
[

) 4 forest

Sparse case

Lemma: Given a graph with m < 100k, and given a Proof of Lemma:
FVS of size k+1, we can decompose the graph into:

EN

Step 1: remove t—o(k) vertlces from forest s.t.
each remaining component is “small”. These are
added to separator

Step 2: for each component, color red/blue
w.p. 1/2 each

SE? ura‘h)r Si2€ (l—:li) k y SR.PWT!J}Q S IQQ'\\' 'lf omc:‘ (iah"ﬁ' Step 3: Color each edge between FVS vertices

red/blue w.p. 1/2 each

Pe [aﬂ incident e:lgts red | > 3"4"3(')_’9 ®

FVS, si2e k+

) 4 forest

Sparse case

Lemma: Given a graph with m < 100k, and given a | Proof of Lemma:
FVS of size k+1, we can decompose the graph into:

v i i S K+
A4 FVS, si2e k+
A " . ‘ / fore

Step 1: remove t=0(k) vertices from forest s.t.
each remaining component is “small”. These are
added to separator

Step 2: for each component, color red/blue
w.p. 1/2 each

SE? ara‘h)r Si?e (I-Qi) k y S.QPW'I’!J}Q S IQQ'\\' 'l' OlflG‘ (lah{' Step 3: Color each edge between FVS vertices

red/blue w.p. 1/2 each
Pe [am incident e:lgts red| > 3'4"3(')_’9 °
[E] # such v] 2 z g""ﬂ"’ .
VEFVS

Jensen ~(avy deg)
S IFvs)-2 :

Sparse case

Lemma: Given a graph with m < 100k, and given a Proof of Lemma:
FVS of size k+1, we can decompose the graph into:

"HIN

Ap'e

Step 1: remove t—o(k) vertlces from forest s.t.

each remaining component is “small”. These are
added to separator

Step 2: for each component, color red/blue
w.p. 1/2 each

; = arujes ,QQ'H' anc‘ ‘. { Ll"i' Step 3: Color each edge between FVS vertices
SE? Cerd"Dr SiZe (l Qi)k S'QP 3 red/blue w.p. 1/2 each

Pr[lﬂudﬂ.ld' chg(s rul] > 3'303(')-—)
[E] # such v] >ig"“a“’ M

veFVS - K'H

Jeo K+ -(300
“,?——‘Fv 2 Kk

' l FVS, size k+|

) 4 forest

Sparse case

Lemma: Given a graph with m < 100k, and given a | Proof of Lemma:
FVS of size k+1, we can decompose the graph into:

A a

— 2 |
"V;VL ,l LD FVS, size k+l
Step 1: reove t=0(k) vrtice fro forst s.t.

each remaining component is “small”. These are
added to separator

Step 2: for each component, color red/blue
w.p. 1/2 each

; o ara,'}es RQ-H' aflG\ ‘. { Lt{' Step 3: Color each edge between FVS vertices
SE? Cerd"Dr SiZe (l Qi) k) W 3 red/blue w.p. 1/2 each

Pe [aﬂ incidant edges red] > NIy
[E[H such v] > i 3"“1(') A .
\

VEFVS

—all ‘.
e
Jeosen K4\ —(avq deq) 300
t..>..Eii=vsl-:1 ¥ 297k,

Cherrott bound (Since each X is ‘small"): #lol s #B ~sk for Soue 825200

L
w

) 4 forest

Sparse case

Lemma: Given a graph with m <100k, and given a | Proof of Lemma:
FVS of size k+1, we can decompose the graph into: o nICLd D

Y

Step 1: remove t=0(k) vertices from forest s.t.
each remaining component is “small”. These are
added to separator

Step 2: for each component, color red/blue

w.p. 1/2 each
Step 3: Color each edge between FVS vertices
red/blue w.p. 1/2 each

FVS, si2e k+

L
L

) 4 forest

repander

Speedup: O*(2.7Ak) time

- Tighten (deg(v)-3) analysis and open 3Atw algorithm [CNP+11]
- [CNP+11] actually solves a counting problem
- special arithmetic structure: speed up via fast matrix
multiplication

Speedup: O*(2.7Ak) time

- Tighten (deg(v)-3) analysis and open 3Atw algorithm [CNP+11]
- [CNP+11] actually solves a counting problem
- special arithmetic structure: speed up via fast matrix
multiplication

Open problems

- Our main conceptual message: 3Ak can be broken (randomized)
- Faster deterministic algorithm? [BBG'00] is inherently randomized

- 2Ak possible?

- SETH lower bound? No 1.00001Ak lower bound known!

