Detecting Feedback Vertex Sets
of Size k in O*(2.7Ak) Time

Jason Li
With Jesper Nederlof (TU Eindhoven)
SODA 2020
January 6, 2020

Introduction

Def: given a graph G, a feedback vertex set (FVS) is
a set F of vertices s.t. G-F is a forest
Equivalently, F hits all cycles of G

Introduction

Def: given a graph G, a feedback vertex set (FVS) is
a set F of vertices s.t. G-F is a forest
Equivalently, F hits all cycles of G

Parameterized by k: given a graph G, find a
FVS of size k in G or determine that none exist

Introduction

Def: given a graph G, a feedback vertex set (FVS) is
a set F of vertices s.t. G-F is a forest
Equivalently, F hits all cycles of G

Parameterized by k: given a graph G, find a
FVS of size k in G or determine that none exist
Want time FPT in k: f(k)*poly(n)

Goal in FPT setting: minimize function f(k).
poly(n) factor does not matter

Prior Work

kO (k)

Downey and Fellows ‘92: f(k) =
Becker et al. [BBG'00]: f(k)=4Ak, randomized
Cygan et al. [CNP+'11]: f(k)=3Ak, randomized

- actually runs in 3Atw time, given a tree decomposition of width tw

Kociumaka and Pilipczuk ‘14: f(k)=3.62Ak deterministic

Prior Work

kO(k)

Downey and Fellows ‘92: f(k) =
Becker et al. [BBG'00]: f(k)=4Ak, randomized
Cygan et al. [CNP+'11]: f(k)=3Ak, randomized

- actually runs in 3Atw time, given a tree decomposition of width tw

Kociumaka and Pilipczuk ‘14: f(k)=3.62Ak deterministic

Our result: f(k)=2.7Ak randomized.
Conceptual message: 32k barrier can be broken
Combines techniques from [BBG'00] and [CNP+11].

Prior Work

kO(k)

Downey and Fellows ‘92: f(k) =
Becker et al. [BBG'00]: f(k)=4Ak, randomized
Cygan et al. [CNP+'11]: f(k)=3Ak, randomized

- actually runs in 3Atw time, given a tree decomposition of width tw

Kociumaka and Pilipczuk ‘14: f(k)=3.62Ak deterministic

Our result: f(k)=2.7Ak randomized.

Conceptual message: 32k barrier can be broken
Combines techniques from [BBG'00] and [CNP+11].
This talk: (3-£)Ak, or how to break 3Ak.

Common Reductions

- Reduction Rule: (G, k) —> (G; k') where G has size-k FVS iff
G’ has size-k' FVS

Common Reductions
- Reduction Rule: (G, k) —> (G; k') where G has size-k FVS iff

G’ has size-k' FVS
(1) Self-loop at v: @
Vv

Common Reductions

- Reduction Rule: (G, k) —> (G; k') where G has size-k FVS iff
G’ has size-k' FVS

(1) Self-loop at v: Must select v in FVS
Vv (G! k) i (G-Vl k-l)

Common Reductions

- Reduction Rule: (G, k) —> (G; k') where G has size-k FVS iff
G’ has size-k' FVS

(1) Self-loop at v: Must select vin FVS
y (G, k) —> (G-v, k-1)

Remove v and decrease k by 1

Common Reductions

- Reduction Rule: (G, k) —> (G; k') where G has size-k FVS iff
G’ has size-k' FVS

(1) Self-loop at v: Must select vin FVS
y (G, k) —> (G-v, k-1)

Remove v and decrease k by 1

(2) Leaf vertex v (degree 1): G-V
V

Common Reductions

- Reduction Rule: (G, k) —> (G; k') where G has size-k FVS iff
G’ has size-k' FVS

(1) Self-loop at v: Must select v in FVS
v (G! k) i (G-Vl k-l)

Remove v and decrease k by 1

(2) Leaf vertex v (degree 1): ,_@ v doesn’t belong in any cycle
\ Remove v: (G, k) —> (G-v, k)

Common Reductions

- Reduction Rule: (G, k) —> (G; k') where G has size-k FVS iff
G’ has size-k' FVS

(1) Self-loop at v: Must select v in FVS
v (G! k) — (G-Vl k-l)

Remove v and decrease k by 1

(2) Leaf vertex v (degree 1): ,_@ v doesn’t belong in any cycle
v Remove v: (G, k) —> (G-v, k)

(3) Degree-2 vertex v: m

Common Reductions

- Reduction Rule: (G, k) —> (G; k') where G has size-k FVS iff
G’ has size-k' FVS

(1) Self-loop at v: Must select v in FVS
v (G! k) i (G-Vl k-l)

Remove v and decrease k by 1

(2) Leaf vertex v (degree 1): ,_@ v doesn’t belong in any cycle
' Remove v: (G, k) —> (G-v, k)

(3) Degree-2 vertexv: 3~ ., Any cycle containing v also contains u
If select v in FVS, then might as well
select u instead

Common Reductions

- Reduction Rule: (G, k) —> (G; k') where G has size-k FVS iff
G’ has size-k' FVS

(1) Self-loop at v: Must select v in FVS
sy (G, k) —> (G-v, k-1)

Remove v and decrease k by 1

(2) Leaf vertex v (degree 1): ,_@ v doesn’t belong in any cycle
v Remove v: (G, k) —> (G-v, k)

(3) Degree-2 vertexv: 3~ ., Any cycle containing v also contains u
\L If select v in FVS, then might as well

select u instead
.« Deletevandaddedge (uw)

Common Reductions

- Reduction Rule: (G, k) —> (G; k') where G has size-k FVS iff
G’ has size-k' FVS

(1) Self-loop at v: When (1),(2),(3) no longer apply:
v - no self-loops

- minimum degree 3

(2) Leaf vertex v (degree 1): @ v doesn’t belong in any cycle
v Remove v: (G, k) —> (G-v, k)

(3) Degree-2 vertexv: 3~ ., Any cycle containing v also contains u
\L If select v in FVS, then might as well

select u instead
v o Delete vandadd edge (uw)

Becker et al. Reduction

- Reduction Rule: (G, k) —> (G; k') where G has size-k FVS iff
G’ has size-k' FVS

Becker et al. Reduction

- Reduction Rule: (G, k) —> (G; k') where G has size-k FVS iff
G’ has size-k' FVS
- Probabilistic Reduction: (G, k) —> (G;, k') where
with probability p, G has size-k FVS iff G’ has size-k' FVS

Becker et al. Reduction

- Reduction Rule: (G, k) —> (G; k') where G has size-k FVS iff
G’ has size-k' FVS
- Probabilistic Reduction: (G, k) —> (G; k') where
with probability p, G has size-k FVS iff G’ has size-k' FVS

Becker et al. [BBG'00]: sample v proportional to deg(v)

Becker et al. Reduction

- Reduction Rule: (G, k) —> (G; k') where G has size-k FVS iff
G’ has size-k' FVS
- Probabilistic Reduction: (G, k) —> (G; k') where
with probability p, G has size-k FVS iff G’ has size-k' FVS
Becker et al. [BBG'00]: sample v proportional to deg(v)
Add v to FVS: (G, k) -> (G-v, k-1)

Becker et al. Reduction

- Reduction Rule: (G, k) —> (G; k') where G has size-k FVS iff

G’ has size-k' FVS
- Probabilistic Reduction: (G, k) —> (G; k') where

with probability p, G has size-k FVS iff G’ has size-k' FVS
Becker et al. [BBG'00]: sample v proportional to deg(v)
Add v to FVS: (G, k) -> (G-v, k-1)
Theorem: if G has minimum degree =3
and a FVS of size k, then with probability
>1/4, vis in the FVS

Becker et al. Reduction

- Reduction Rule: (G, k) —> (G; k') where G has size-k FVS iff

G’ has size-k' FVS
- Probabilistic Reduction: (G, k) —> (G; k') where

with probability p, G has size-k FVS iff G’ has size-k' FVS
Becker et al. [BBG'00]: sample v proportional to deg(v)
Add v to FVS: (G, k) -> (G-v, k-1)
Theorem: if G has minimum degree =3 Tight: k=1_n200
and a FVS of size k, then with probability

>1/4, v is in the FVS "3 St dey o0 :

Becker et al. Reduction

- Reduction Rule: (G, k) —> (G; k') where G has size-k FVS iff
G’ has size-k' FVS
- Probabilistic Reduction: (G, k) —> (G; k') where
with probability p, G has size-k FVS iff G’ has size-k' FVS

Becker et al. [BBG'00]: sample v proportional to deg(v)

Add v to FVS: (G, k) -> (G-v, k-1)
Theorem: if G has minimum degree =3 Tight: k=1_nz00
and a FVS of size k, then with probability
>1/4, v is in the FVS Ay 388 dey fm 003 :
Prob. 1/4 to decrease k by 1 and preserve reduction
=> prob. 1/4/Ak to go all the way. Repeat 4Ak times: O*(4Ak) algo.

Our Approach

Dense case: m >> O(k):

Sparse case: m < O(k):

Our Approach

Dense case: m >> O(k):
- Modify [BBG'00]: sample v with prob. ~ deg(v)-3

Sparse case: m < O(k):

Our Approach

Dense case: m >> O(k):
- Modify [BBG'00]: sample v with prob. ~ deg(v)-3

k={!/ nx00) k={l/ n*00)

m Success w.p. 1

da: 333 3 dy3 000 2

Sparse case: m < O(k):

Our Approach

Dense case: m >> O(k):
- Modify [BBG'00]: sample v with prob. ~ deg(v)-3

k=l/ nx00) k=a|/ n00)
m Success w.p. 1
dg: 333 3 dw3: 000 2
Lemma: if m = 100k, then reduction succeeds w.p. 1/2.99
Repeat k times => 2.99Ak algo

Sparse case: m < O(k):

Our Approach

Dense case: m >> O(k):
- Modify [BBG'00]: sample v with prob. ~ deg(v)-3

k'ﬂ/ nx00) k=a|/ n00)
m Success w.p. 1
dy: 333 3 dy3} 000 2
Lemma: if m = 100k, then reduction succeeds w.p. 1/2.99
Repeat k times => 2.99Ak algo
Sparse case: m < O(k):
Lemma: if m < 100k and exists FVS size k, then

G has treewidth (1-Q(1))k

Our Approach

Dense case: m >> O(k):
- Modify [BBG'00]: sample v with prob. ~ deg(v)-3

k'ﬂ/ nx00) k={l/ n00)
m Success w.p. 1
dy: 333 3 dy3}: 000 2
Lemma: if m = 100k, then reduction succeeds w.p. 1/2.99
Repeat k times => 2.99Ak algo
Sparse case: m < O(k):
Lemma: if m < 100k and exists FVS size k, then
G has treewidth (1-Q(1))k

Can find such a tree decomposition. Run 3Atw algo [CNP+11]

Our Approach

Dense case: m >> O(k):
- Modify [BBG'00]: sample v with prob. ~ deg(v)-3

k'ﬂ/ n2x00) k={l/ n0W)
4222??§§§§§§S$ Success w.p. 1
dy: 333 3 dy3 000 2
Lemma: if m = 100k, then reduction succeeds w.p. 1/2.99
Repeat k times => 2.99Ak algo
Sparse case: m < O(k):
Lemma: if m < 100k and exists FVS size k, then

=-00))
G has treewidth (1-Q(1))k 5, time LK o

={1-t)
Can find such a tree decomposition. Run 3Atw algo [CNP+11]

Dense case: m >> O(k)

Lemma: Let F be a FVS of graph G. Then,
deg(V\F) < deg(F) + 2(IV\FI-1), where deg(S) := 2 deg(v)

VES

Dense case: m >> O(k)

Lemma: Let F be a FVS of graph G. Then,
deg(V\F) < deg(F) + 2(IV\FI-1), where deg(S) := 2 deg(v)
Proof: VES
- G-F is forest => at most IV\FI-1 edges with both endpoints in G-F.
Each contributes +2 to deg(V\F), for a total of < 2(IV\FI-1)
- Every edge between F and V\F contributes +1 to both deg(F) and deg(V\F)

Dense case: m >> O(k)

Lemma: Let F be a FVS of graph G. Then,
deg(V\F) < deg(F) + 2(IV\FI-1), where deg(S) := 2 deg(v)

Proof: VES
- G-F is forest => at most IV\FI-1 edges with both endpoints in G-F.
Each contributes +2 to deg(V\F), for a total of < 2(IV\FI-1)

- Every edge between F and V\F contributes +1 to both deg(F) and deg(V\F)
If n = 4k and F has size k:

Dense case: m >> O(k)

Lemma: Let F be a FVS of graph G. Then,
deg(V\F) < deg(F) + 2(IV\FI-1), where deg(S) := 2 deg(v)

Proof: VES
- G-F is forest => at most IV\FI-1 edges with both endpoints in G-F.
Each contributes +2 to deg(V\F), for a total of < 2(IV\FI-1)

- Every edge between F and V\F contributes +1 to both deg(F) and deg(V\F)
If n = 4k and F has size k:
D (deg(v)-3) = des(W\F)-3|V\F|
R £ deg(F)+ A N\FI- 1) - 3IV\F
< doy(F) = 3IV\F|

n=4k: |V\FI23k=3|Fl|
< deq F) -3|H=‘§=(°‘°3(“"33

Dense case: m >> O(k)

Lemma: Let F be a FVS of graph G. Then,
deg(V\F) < deg(F) + 2(IV\FI-1), where deg(S) := 2 deg(v)
Proof: VES
- G-F is forest => at most IV\FI-1 edges with both endpoints in G-F.
Each contributes +2 to deg(V\F), for a total of < 2(IV\FI-1)
- Every edge between F and V\F contributes +1 to both deg(F) and deg(V\F)

If n >4k and F has size k:
D (deg()-3) = des(V\F)-3|V\F|
f-f—F édes(l:)f A(IN\EL= 1) = 3IV\F
< dey(F) = 3IV\F|
n=4k: |[V\FI=23k=3|F|
< deq F) -3|F12:‘§=(°‘°3(“"33

choose veF we =V2

Dense case: m >> O(k)

Lemma: Let F be a FVS of graph G. Then,
deg(V\F) < deg(F) + 2(IV\FI-1), where deg(S) := 2 deg(v)
Proof: VES
- G-F is forest => at most IV\FI-1 edges with both endpoints in G-F.
Each contributes +2 to deg(V\F), for a total of < 2(IV\FI-1)
- Every edge between F and V\F contributes +1 to both deg(F) and deg(V\F)

If n = 4k and F has size k: If m = 20n and F has size k:
S (deg(v)-3) = des(W\F)-3|V\F|
l'f—': éoles(F)i-}(NAEL- 1) = 3|\
< deg(F) = 3IV\F|
n=4k: |VI\FI=3k=3|F|
< deq F) -3|F12:‘§=(°‘°3(“"33

choose veF we =V2

Dense case: m >> O(k)

Lemma: Let F be a FVS of graph G. Then,
deg(V\F) < deg(F) + 2(IV\FI-1), where deg(S) := 2 deg(v)
Proof: VES
- G-F is forest => at most IV\FI-1 edges with both endpoints in G-F.
Each contributes +2 to deg(V\F), for a total of < 2(IV\FI-1)
- Every edge between F and V\F contributes +1 to both deg(F) and deg(V\F)

If n = 4k and F has size k: If m = 20n and F has size k:
(deq(v)-3) = deg(V\F)-3 V\F| dea(V)-dea (F) £ dealp) +2(|V\F|-1

D A)y (F) £ i) +3(VF1-)

= £ deg(F)+ A(N\EI-1) - 3IV\F! Am ’ n-K
< deg(F) = 3IV\F| Aﬂjﬂ:)?. T(Qm-ﬂ(n-k*h) > m-n+K

n>4k: |V\FI=23k=3|F| i@nﬁtﬂ-}) "—'0\343(\') ~3F\ = m-4pn 20.3m
4 ST | S 0e13) £ don(V) =2

choose veF we =2 a %CMS = An':) —am

Dense case: m >> O(k)

Lemma: Let F be a FVS of graph G. Then,
deg(V\F) < deg(F) + 2(IV\FI-1), where deg(S) := 2 deg(v)
Proof: VES
- G-F is forest => at most IV\FI-1 edges with both endpoints in G-F.
Each contributes +2 to deg(V\F), for a total of < 2(IV\FI-1)
- Every edge between F and V\F contributes +1 to both deg(F) and deg(V\F)

If n >4k and F has size k: If m > 20n and F has size k:
(deg(1)-3) = deg(W\F)-3|V\F| deg(V)-dog (F) £ daqlF) +2([V\F(-

%""’ﬂ) Y eq(V) Aﬂj) 3 (L_J\)

— _olea(F)i-;(\\a\Fl- 1) = 3IV\F| 2Am ’ n-k
< doy(F) = 3IV\F| Aﬂjﬂ:)?. i‘(Qm- An-Kk-1) > m-n+K

n2bk: [V\FI= 3k =3|F D @ay13) = deg(V) - 3IF| 2 m-4n 2 0.3m
< deq(F) -3IFl2‘-‘§=(°‘°5(")'3) VEF ") Z (V) =) 0.3m _ success

choose veF wep =V2 - %Qﬁs‘ 3)< AQO M Jm we =04

Dense case: m >> O(k)

Lemma: Let F be a FVS of graph G. Then,
deg(V\F) < deg(F) + 2(IV\FI-1), where deg(S) := 2 deg(v)

Proof: Ves
] (::;:; So if success prob < 1/2.99, then must have G-F.
- Every ¢ M = 20n < 80k => m < O(k) and deg(V\F)
If n = 4k and F has size k: If m > 20n and F has size k:
(deg(+)-3) = des(v\F)-3|V\F| dea(V)-dea (F) £ dealr) +Q((V\Fl-1
%""ﬂ) % eq(V)-dog) 3 (L‘)
— £ deg(F)+ A(N\FI~ 1)-3l\F| 2m ’ n-k
< deg(F) = 3IV\F| Aﬂﬂﬂ:)?. i‘(Qm- Q(l\-k-*m > m-n+K
n2hk: [V\FI=3k = 3|F| S do)3) = dog(v) = 3IF| = -4 20.3m
S (iuj(F\ _3'F(‘:‘gF(dQs(v)'3) VEF L)) z (V) —.) 0\%'“ =b SUCCe SS
choose veF we =2 - %Qws\ 3)< AQO —ZM Qm we- 20k

Iterative Compression

Original problem: given graph G, find FVS size k, or determine
none exist.

lterative Compression

Original problem: given graph G, find FVS size k, or determine
none exist.

Iterative Compression reduces to: given graph G and FVS size
(k+1), find FVS size k or determine none exist.

lterative Compression

Original problem: given graph G, find FVS size k, or determine
none exist.

Iterative Compression reduces to: given graph G and FVS size
(k+1), find FVS size k or determine none exist.

- Get size (k+1) FVS as input for free

Sparse case

Lemma: Given a graph with m < 100k, and given a
FVS of size k+1,

Sparse case

Lemma: Given a graph with m < 100k, and given a
FVS of size k+1, we can decompose the graph into:

<Size €K size €K

Forest
Separactor Size (I-2g)k, Separtes fett aad right

Sparse case

Lemma: Given a graph with m < 100k, and given a
FVS of size k+1, we can decompose the graph into:

<ize €X size €K

Focest
Separactor Size (I-2g)k, Separtes fett aad right

Claim: a graph with this decomposition has treewidth (1-Q(1))k
Proof:

Sparse case

Lemma: Given a graph with m < 100k, and given a
FVS of size k+1, we can decompose the graph into:

size €K

Seg)arodvr SiZe —Qi)k) Szpartdes Lot and r‘u‘ah{'

Claim: a graph with this decomposition has treewidth (1-Q(1))k

(=4 (Forest)

Sparse case

Lemma: Given a graph with m < 100k, and given a
FVS of size k+1, we can decompose the graph into:

S\2e f: size €k
i €=0(4)
focest/] \o Fores

Sag)arodvr Size —Qi)k) Sepore Leit and ru‘ah{'

JCW(CAt+ek (forest + gk vertices)
b (6) € A+ek+ (1-20k (add ast (120 verbiaas)
= (4-Q (1)K

Sparse case

Lemma: Given a graph with m < 100k, and given a | Proof of Lemma:

. - = /"—X oy
FVS of size k+1, we can decompose the graph into: 7o 5% FVS, size K+

Siie €K forest

forest
Sq)arodvr SiZe (l—:li)k) Sapara;}es Ledt and ru‘ah{'

Sparse case

Lemma: Given a graph with m < 100k, and given a | Proof of Lemma:

. . = m e
FVS of size k+1, we can decompose the graph into: 75 5% FVS, size K+

S\‘ 1 ?'k PIES ‘E,k forest

E - ﬂ (i) Step 1: remove t=0(k) vertices from forest s.t.
each remaining component is “small” These are
added to separator

forest
Sq)arodvr SiZe (l—:li)k) Szparw}es Lo}t and ru‘ah{'

Sparse case

Lemma: Given a graph with m < 100k, and given a | Proof of Lemma:
FVS of size k+1, we can decompose the graph into:

= W
22843 ¢ FVS, size k¢l

S\ie €K size €K

Forest

E - ﬂ (i) Step 1: remove t=0(k) vertices from forest s.t.
each remaining component is “small” These are

added to separator

Step 2: for each component, color red/blue

w.p. 1/2 each

forest
Sq)arodvr SiZe (l—:li)k) Szparaﬁes Lo}t and ru‘ah{'

Sparse case

Lemma: Given a graph with m < 100k, and given a | Proof of Lemma:
FVS of size k+1, we can decompose the graph into:

O a ik
L) FVS, size k+

S\ie €K size €K

Forest

E - ﬂ (i) Step 1: remove t=0(k) vertices from forest s.t.
each remaining component is “small” These are

added to separator

Step 2: for each component, color red/blue

w.p. 1/2 each

forest
Seg)arodvr SiZe (l—:li)k) Saparaﬁes Ledt and ru‘ah{'

KO AL

orest

Sparse case

Lemma: Given a graph with m < 100k, and given a | Proof of Lemma:
FVS of size k+1, we can decompose the graph into: U AW

FVS, size k+

S\‘ 1 ?'k SIS Qk forest

E - ﬂ (i) Step 1: remove t=0(k) vertices from forest s.t.
each remaining component is “small” These are
added to separator

Step 2: for each component, color red/blue

forest
w.p. 1/2 each

Se_? (erd'"Dr S ‘ 2e (l_ai) k) SQP(M‘UJ}QS !Q"\' t ouw\ r lah{' Step 3: Color each edge between FVS vertices

red/blue w.p. 1/2 each

X AL

orest

Sparse case

Lemma: Given a graph with m < 100k, and given a
FVS of size k+1, we can decompose the graph into:

S\ie €K size €K

forest
Sq)arodvr SiZe (l—:li)k) Szparaﬁes Ledt and r‘u‘ah{'

Proof of Lemma:

Step 1: remove t=0(k) vertices from forest s.t.
each remaining component is “small” These are
added to separator

Step 2: for each component, color red/blue

w.p. 1/2 each

Step 3: Color each edge between FVS vertices
red/blue w.p. 1/2 each

KA 1

orest

Sparse case

Lemma: Given a graph with m < 100k, and given a
FVS of size k+1, we can decompose the graph into:

S\ie €K size €K

forest
Sq)arodvr SiZe (l—:li)k) Szparw}es Ledt and ru‘ah{'

) 1 forest
Step 1: remove t=0(k) vertices from forest s.t.
each remaining component is “small” These are
added to separator
Step 2: for each component, color red/blue
w.p. 1/2 each

Step 3: Color each edge between FVS vertices
red/blue w.p. 1/2 each

Sparse case

Lemma: Given a graph with m < 100k, and given a
FVS of size k+1, we can decompose the graph into:

S\ie €K size €K

[forest

E o ﬂ (i) Step 1: remove t=0(k) vertices from forest s.t.
each remaining component is “small” These are
added to separator

Step 2: for each component, color red/blue

forest
w.p. 1/2 each

) = arajes ,QQ'HT ouw\ (i l\ Ll{' Step 3: Color each edge between FVS vertices
SQ? ara:h:r‘ Size (l Qi) k) SLP 3 red/blue w.p. 1/2 each

99 0 ©°

remainder

Sparse case

Lemma: Given a graph with m < 100k, and given a
FVS of size k+1, we can decompose the graph into:

size €K

S‘\'{Q f,k 'Fomst

E o ﬂ (i) Step 1: remove t=0(k) vertices from forest s.t.
each remaining component is “small” These are
added to separator

Step 2: for each component, color red/blue

forest
w.p. 1/2 each

) - arajes ,QQ'HT ouw\ (i l\ Ll{' Step 3: Color each edge between FVS vertices
SQ? arodvr‘ Size (l Qi) k) SLP 3 red/blue w.p. 1/2 each

?f‘ [o.m incidant uhjzs rd] > 3"'03(')_’9 o

99 0 ©

remander

Sparse case

Lemma: Given a graph with m < 100k, and given a
FVS of size k+1, we can decompose the graph into:

S\‘-‘l& i'k Siee Qk %mst

E o ﬂ (i) Step 1: remove t=0(k) vertices from forest s.t.
each remaining component is “small” These are
added to separator

Step 2: for each component, color red/blue

Forest
w.p. 1/2 each

) - arajes ,QQ'HC ouw\ (i l\ L\{' Step 3: Color each edge between FVS vertices
SQ? ara:har‘ Size (l Qi) k) SRP 3 red/blue w.p. 1/2 each

Pe [om incidant ing(s rd] > 3"'9‘*’_,; o
E] # such v] }.ig"“ﬂ(‘) -
VEFVS

Jeosen ~(@avy deg)
S Tevsl2

99 0 ©°

remainder

Sparse case

Lemma: Given a graph with m < 100k, and given a
FVS of size k+1, we can decompose the graph into:

size €K

S‘\'{Q f,k 'Fomst

E - ﬂ (i) Step 1: remove t=0(k) vertices from forest s.t.
each remaining component is “small” These are

added to separator

Step 2: for each component, color red/blue

forest
w.p. 1/2 each

Se_? (erd'"Dr S ‘ 2e (l_ai) k) SQPOJ'UJ}QS zQQ"\' t &ﬂa r ISL\{' Step 3: Color each edge between FVS vertices

red/blue w.p. 1/2 each
Pe [o.ﬁl incidant ing(s rd]> 3"“3(')_’) o
E] # such v] }.ig"“ﬂm 22% 2200 -

VEFVS = K&\ T
ﬁ
Jensen K ..(‘,u,5 ‘,3) S =300
2 ‘1Fvsi- 2 k.

99 0 ©

remander

Sparse case

Lemma: Given a graph with m < 100k, and given a
FVS of size k+1, we can decompose the graph into:

size €K

S\\-{& ?'k 'Fomsf

E - ﬂ (i) Step 1: remove t=0(k) vertices from forest s.t.
each remaining component is “small” These are

added to separator

Step 2: for each component, color red/blue

Forest
w.p. 1/2 each

) = arajes ,QQ'HC ouw\ (i l\ Ll{' Step 3: Color each edge between FVS vertices
SQ?&('CC""D(' Size (l Qi) k) SRP 3 red/blue w.p. 1/2 each

Pr[o.m incidant uhjts rd] 23"“5(0_’9 o
[E[# such v] }.ig""ﬂm 22% 2200 -

VEFVS - K4\ ~
P..
Jeosen k4! -(avydeg) » 43
2 TFvsi- 22k

Cheroott bound (snce esch 3¢ is ‘smalt”): #[o]22 # () K'gk for some €20

99 0 ©

femander

Sparse case

Lemma: Given a graph with m < 100k, and given a
FVS of size k+1, we can decompose the graph into:

S\ie €K size €K

forest
Seg)arodvr SiZe (l—:li)k) Szpara:\es Ledt and ru‘ah{'

Pr{af incident edges red] 2> s

[E[-# such v] >ig"“1m p, am 200

VEFVS - K4\ ~

Im o 2-(“5"3) > 3%

Fvs
Cherroff bound (Since each X is ‘sma"): 1o

Proof of Lemma;

FVS, size k+
) 1 forest

Step 1: remove t=0(k) vrtices fro forst s.t.

each remaining component is “small” These are

added to separator

Step 2: for each component, color red/blue

w.p. 1/2 each

Step 3: Color each edge between FVS vertices
red/blue w.p. 1/2 each

99 0 ©

f@mam-lQr
size A (\-Qe+e(MNk

~ #\°) ~ek for some £>2

Speedup: O*(2.7Ak) time

- Tighten (deg(v)-3) analysis and open 3Atw algorithm [CNP+11]
- [CNP+11] actually solves a counting problem
- special arithmetic structure: speed up via fast matrix
multiplication

Speedup: O*(2.7Ak) time

- Tighten (deg(v)-3) analysis and open 3Atw algorithm [CNP+11]
- [CNP+11] actually solves a counting problem
- special arithmetic structure: speed up via fast matrix
multiplication

Open problems

- Our main conceptual message: 32k can be broken (randomized)
- Faster deterministic algorithm? [BBG'00] is inherently randomized

- 2Ak possible?

- SETH lower bound? No 1.00001Ak lower bound known!

