Deterministic Mincut in Almost Linear Time

Jason Li (CMU)

Work done while visiting Microsoft Research, Redmond Algorithms Group: Sivakanth Gopi, Janardhan Kulkarni, Jakub Tarnawski, Sam Wong

Deterministic Mincut in Almost Linear Time or

A Structural Representation of the Cuts of a Graph

Jason Li (CMU)

Work done while visiting Microsoft Research, Redmond Algorithms Group: Sivakanth Gopi, Janardhan Kulkarni, Jakub Tarnawski, Sam Wong

This talk: all graphs are undirected and unweighted

This talk: all graphs are undirected and unweighted

(Global) mincut: given a graph, find a minimum # edges whose removal disconnects the graph

This talk: all graphs are undirected and unweighted

(Global) mincut: given a graph, find a minimum # edges whose removal disconnects the graph

Randomized contraction: $\tilde{O}(n^2)$ time [Karger, Stein '96]

- This talk: all graphs are undirected and unweighted
- (Global) mincut: given a graph, find a minimum # edges whose removal disconnects the graph
- Randomized contraction: Õ(n²) time [Karger, Stein '96]
- Sparsification + tree packing: O(m) time randomized [Karger '96]

- This talk: all graphs are undirected and unweighted
- (Global) mincut: given a graph, find a minimum # edges whose removal disconnects the graph
- Randomized contraction: $\widetilde{O}(n^2)$ time [Karger, Stein '96]
- Sparsification + tree packing: $\widetilde{O}(m)$ time randomized [Karger '96]
- [Karger '96]: deterministic $\widetilde{O}(m)$ time algorithm? (Best was $\widetilde{O}(mn)$)

- This talk: all graphs are undirected and unweighted
- (Global) mincut: given a graph, find a minimum # edges whose removal disconnects the graph
- Randomized contraction: $\tilde{O}(n^2)$ time [Karger, Stein '96]
- Sparsification + tree packing: O(m) time randomized [Karger '96]
- [Karger '96]: deterministic $\widetilde{O}(m)$ time algorithm? (Best was $\widetilde{O}(mn)$)
 - [Kawarabayashi, Thorup '15]: O(m) time for simple graphs

- This talk: all graphs are undirected and unweighted
- (Global) mincut: given a graph, find a minimum # edges whose removal disconnects the graph
- Randomized contraction: $\widetilde{O}(n^2)$ time [Karger, Stein '96]
- Sparsification + tree packing: $\widetilde{O}(m)$ time randomized [Karger '96]
- [Karger '96]: deterministic $\tilde{O}(m)$ time algorithm? (Best was $\tilde{O}(mn)$)
 - [Kawarabayashi, Thorup '15]: Õ(m) time for <u>simple</u> graphs
 - [L, Panigrahi '20]: polylog(n) many exact s-t maxflows

- This talk: all graphs are undirected and unweighted
- (Global) mincut: given a graph, find a minimum # edges whose removal disconnects the graph
- Randomized contraction: $\widetilde{O}(n^2)$ time [Karger, Stein '96]
- Sparsification + tree packing: O(m) time randomized [Karger '96]
- [Karger '96]: deterministic $\tilde{O}(m)$ time algorithm? (Best was $\tilde{O}(mn)$)
 - [Kawarabayashi, Thorup '15]: Õ(m) time for <u>simple</u> graphs
 - [L, Panigrahi '20]: polylog(n) many exact s-t maxflows
 - This talk: m^{1+o(1)} time by derandomizing [Karger '96]

- This talk: all graphs are undirected and unweighted
- (Global) mincut: given a graph, find a minimum # edges whose removal disconnects the graph
- Randomized contraction: $\widetilde{O}(n^2)$ time [Karger, Stein '96]
- Sparsification + tree packing: O(m) time randomized [Karger '96]
- [Karger '96]: deterministic $\tilde{O}(m)$ time algorithm? (Best was $\tilde{O}(mn)$)
 - [Kawarabayashi, Thorup '15]: Õ(m) time for <u>simple</u> graphs
 - [L, Panigrahi '20]: polylog(n) many exact s-t maxflows
 - This talk: m^{1+o(1)} time by derandomizing [Karger '96] Along the way: structural representation of cuts

- This talk: all graphs are undirected and unweighted
- (Global) mincut: given a graph, find a minimum # edges whose removal disconnects the graph
- Randomized contraction: $\widetilde{O}(n^2)$ time [Karger, Stein '96] \checkmark
- Sparsification + tree packing: \widetilde{O} (m) time randomized [Karger '96] \checkmark
- [Karger '96]: deterministic $\tilde{O}(m)$ time algorithm? (Best was $\tilde{O}(mn)$)
 - [Kawarabayashi, Thorup '15]: Õ(m) time for <u>simple</u> graphs
 - [L, Panigrahi '20]: polylog(n) many exact s-t maxflows 🗸
 - This talk: m^{1+o(1)} time by derandomizing [Karger '96] ✓ weighted Along the way: structural representation of cuts

Thm [Karger '96]: Suppose given a skeleton graph H s.t.

- H has O(m) edges
- The mincut of H is no(1)
- For the mincut ∂₆S* in G, the cut ∂_HS* is a 1.1-approximate mincut in H Then, can compute exact mincut in G in mn^{o(1)} additional time

Thm [Karger '96]: Suppose given a skeleton graph H s.t.

- H has O(m) edges
- The mincut of H is no(1)
- For the mincut ∂₆S* in G, the cut ∂_HS* is a 1.1-approximate mincut in H Then, can compute exact mincut in G in mn^{o(1)} additional time
- Algo (given skeleton):
- Compute a tree packing of no(1) trees into H
 - One of these trees 2-respects the mincut $\partial_{\sigma}S^*$ in G

Thm [Karger '96]: Suppose given a skeleton graph H s.t.

- H has O(m) edges
- The mincut of H is no(1)
- For the mincut ∂₆S* in G, the cut ∂_HS* is a 1.1-approximate mincut in H
- Then, can compute exact mincut in G in mno(1) additional time

Algo (given skeleton):

- Compute a tree packing of no(1) trees into H
 - One of these trees 2-respects the mincut $\partial_{\Theta}S^*$ in G

2-respect: ≤2 edges of T cross

mincut

the cut

Thm [Karger '96]: Suppose given a skeleton graph H s.t.

- H has O(m) edges
- The mincut of H is no(1)
- For the mincut ∂₆S* in G, the cut ∂_HS* is a 1.1-approximate mincut in H
- Then, can compute exact mincut in G in mno(1) additional time

mincut

2-respect:

of T cross

the cut

Algo (given skeleton):

- Compute a tree packing of no(1) trees into H
 - One of these trees 2-respects the mincut $\partial_{\Theta}S^*$ in G
- For each of the n^{o(1)} trees, compute the minimum 2-respecting cut in G in O(m) time

Thm [Karger '96]: Suppose given a skeleton graph H s.t.

- H has O(m) edges
- The mincut of H is no(1)
- For the mincut ∂₆S* in G, the cut ∂_HS* is a 1.1-approximate mincut in H
- Then, can compute exact mincut in G in mno(1) additional time

mincut

2-respect:

of T cross

the cut

Algo (given skeleton): deterministic!

- Compute a tree packing of no(1) trees into H
 - One of these trees 2-respects the mincut $\partial_{\Theta}S^*$ in G
- For each of the n^{o(1)} trees, compute the minimum 2-respecting cut in G in O(m) time

Thm [Karger '96]: Suppose given a skeleton graph H s.t.

- H has O(m) edges Karger: randomized skeleton via graph sparsification

2-respect:

of T cross

the cut

- The mincut of H is no(1)
- For the mincut ∂₆S* in G, the cut ∂_HS* is a 1.1-approximate mincut in H
- Then, can compute exact mincut in G in mn^{o(1)} additional time

Algo (given skeleton): deterministic!

- Compute a tree packing of no(1) trees into H
 - One of these trees 2-respects the mincut $\partial_{\Theta}S^*$ in G
- For each of the n^{o(1)} trees, compute the minimum 2-respecting cut in G in O(m) time

Thm [Karger '96]: Suppose given a skeleton graph H s.t.

- H has O(m) edges Karger: randomized skeleton via graph sparsification
- The mincut of H is n^{o(1)} (1+8) approximate cut sparsifier
- For the mincut $\partial_6 S^*$ in G, $\angle suffices: \exists W \text{ s.t. } \forall S: W |\partial_H S| \approx (\text{I} \pm \epsilon) |\partial_G S|$ the cut $\partial_H S^*$ is a 1.1-approximate mincut in H

the cut

Then, can compute exact mincut in G in mn^{o(1)} additional time

Algo (given skeleton): deterministic!

- Compute a tree packing of no(1) trees into H
 - One of these trees 2-respects the mincut $\partial_{\Theta}S^{T}$ in G
- For each of the n^{o(1)} trees, compute the minimum 2-respecting cut in G in O(m) time

Sample each edge in G with prob p := $\frac{100 \log n}{5^2 \lambda}$. Let H = sampled edges

Sample each edge in G with prob p := $\frac{100 \log n}{\xi^2 \lambda}$. Let H = sampled edges

Thm [Karger] w.h.p., each cut ∂S ($S \subseteq V$) satisfies $|\partial_H S| \approx (1 \pm \epsilon) \rho |\partial_G S|$

Sample each edge in G with prob p := $\frac{100 \log n}{\xi^2 \lambda}$. Let H = sampled edges

Thm [Karger] w.h.p., each cut $\partial S(S \subseteq V)$ satisfies $|\partial_H S| \approx (1 \pm \epsilon) \rho |\partial_G S|$

Sample each edge in G with prob p := $\frac{100 \log n}{\xi^2 \lambda}$. Let H = sampled edges

Thm [Karger] w.h.p., each cut 35 (SEV) satisfies

$$|\partial_{H}S| \approx (1\pm \epsilon) \rho |\partial_{G}S|$$

$$E[|\partial_{H}S|]$$

.
$$\leq n^{2\alpha}$$
 cuts of size $\leq \alpha \lambda$

Sample each edge in G with prob $p := \frac{100 \log n}{c^2 \lambda}$. Let H = sampled edges

Thm [Karger] w.h.p., each cut 35 (SEV) satisfies

$$|\partial_{H}S| \approx (1\pm \epsilon) \rho |\partial_{G}S|$$

$$|E[|\partial_{H}S|]$$

- $\leq n^{2\alpha}$ cuts of size $\leq \alpha\lambda$ $\Pr[\text{cut }\partial S \text{ of size } \approx \alpha\lambda \text{ fails }] \leq \frac{1}{n^{3\alpha}}$ [Chernoff]

Sample each edge in G with prob p := $\frac{100 \log n}{\xi^2 \lambda}$. Let H = sampled edges

Thm [Karger] w.h.p., each cut 35 (SEV) satisfies

$$|\partial_{H}S| \approx (1\pm \epsilon) \rho |\partial_{G}S|$$

$$|E[10HS1]$$

•
$$\leq n^{2\alpha}$$
 cuts of size $\leq \alpha \lambda$
• $Pr[\text{cut }\partial S \text{ of size } \approx \alpha \lambda \text{ fails }] \leq \frac{1}{n^{3\alpha}} \quad [\text{Chernoff}]$
 $\Rightarrow Pr[\text{Some cut of size } \approx \alpha \lambda \text{ fails }] \leq n^{2\alpha} \cdot \frac{1}{n^{3\alpha}} = \frac{1}{n^{\alpha}}$

Sample each edge in G with prob $p := \frac{100 \log n}{c^2 \lambda}$. Let H = sampled edges

Thm [Karger] w.h.p., each cut 35 (SEV) satisfies

$$|\partial_{H}S| \approx (1\pm \epsilon) \rho |\partial_{G}S|$$

$$|E[10HS1]$$

Proof: "smart union bound over all cuts"

•
$$\leq n^{2\alpha}$$
 cuts of size $\leq \alpha \lambda$
• $\Pr[\text{cut }\partial S \text{ of size } \approx \alpha \lambda \text{ fails }] \leq \frac{1}{n^{3\alpha}} \quad [\text{Chernoff}]$
 $\Rightarrow \Pr[\text{Some cut of size } \approx \alpha \lambda \text{ fails }] \leq n^{2\alpha} \cdot \frac{1}{n^{3\alpha}} = \frac{1}{n^{\alpha}}$

· union bound over α : $\leq \frac{1}{n^{\alpha}} = O(\frac{1}{n})$.

Sample each edge in G with prob p := $\frac{100 \log n}{\xi^2 \lambda}$. Let H = sampled edges

Thm [Karger] w.h.p., each cut
$$\partial S(S \subseteq V)$$
 satisfies $|\partial_H S| \approx (1 \pm \epsilon) \rho |\partial_G S|$

Derandomization?

Sample each edge in G with prob p := $\frac{100 \log n}{\xi^2 \lambda}$. Let H = sampled edges

Thm [Karger] w.h.p., each cut $\partial S(S \subseteq V)$ satisfies $|\partial_H S| \approx (1 \pm \epsilon) \rho |\partial_G S|$

Derandomization?

Even verification is hard! 2ⁿ cuts to check Need to "union bound" more efficiently

Sample each edge in G with prob p := $\frac{100 \log n}{\xi^2 \lambda}$. Let H = sampled edges

Thm [Karger] w.h.p., each cut $\partial S(S \subseteq V)$ satisfies $|\partial_H S| \approx (1 \pm \epsilon) \rho |\partial_G S|$

Derandomization?

Even verification is hard! 2ⁿ cuts to check

Need to "union bound" more efficiently

Solution: structural representation of cuts (rest of this talk)

Sample each edge in G with prob p := $\frac{100 \log n}{\xi^2 \lambda}$. Let H = sampled edges

Thm [Karger] w.h.p., each cut $\partial S(S \subseteq V)$ satisfies $|\partial_H S| \approx (1 \pm \epsilon) \rho |\partial_G S|$

Derandomization?

Even verification is hard! 2ⁿ cuts to check

Need to "union bound" more efficiently

Solution: structural representation of cuts (rest of this talk)

Derandomization: structural representation of target objects

Spectral approach: H is a (1+E)-approximate cut sparsifier of G if

$$L_H \approx (1\pm \epsilon) L_G$$
 (spectral sparsifier)
 $L_{Aplacian matrix of G}$

Spectral approach: H is a (1+E)-approximate cut sparsifier of G if

```
based on eigenvalues of the Laplacian
```

$$L_H \approx (1\pm \epsilon) L_G$$
 (spectral sparsifier)
Laplacian matrix of G

Spectral approach: H is a (1+E)-approximate cut sparsifier of G if

```
based on eigenvalues of the Laplacian
```

```
L_{H} \approx (1\pm \epsilon) L_{G} (spectral sparsifier)

L_{Aplacian matrix of G}
```

=> deterministic sparsification in mn³ time [BSS'12] (also randomized in \widetilde{O} (m) time [LS'17])

Spectral approach: H is a (1+E)-approximate cut sparsifier of G if

```
based on eigenvalues of the Laplacian matrix of G

=> deterministic sparsification in mn<sup>3</sup> time [BSS'12] (also randomized in \widetilde{O}(m) time [LS'17])
```

So far, all deterministic (1+ £)-approximate sparsifiers use this spectral representation of cuts

Spectral approach: H is a (1+E)-approximate cut sparsifier of G if

```
based on eigenvalues of the Laplacian matrix of G

=> deterministic sparsification in mn<sup>3</sup> time [BSS'12] (also randomized in \widetilde{O}(m) time [LS'17])
```

So far, all deterministic (1+ £)-approximate sparsifiers use this spectral representation of cuts

This work: combinatorial representation via expander decomposition

Structural Representation: Roadmap

1. Expander case: why are expanders easy?

2. "Expander of expanders": how to generalize?

3. Expander decomposition and additional challenges

G is a
$$\phi$$
-expander if $\overline{\Phi}(6) \ge \phi$

|E(S,V|S)| $|S = \min_{S \subseteq V} \frac{|E(S,V|S)|}{|Vol(S)|}$ $|Vol(S)| \leq |Vol(V|S)| \leq |Vol(V|S)|$ $|Vol(S)| \leq |Vol(V|S)|$ $|Vol(S)| \leq |Vol(V|S)|$ $|Vol(S)| \leq |Vol(S)|$ $|Vol(S)| \leq |V$

Conductance of a graph: $\overline{\Phi}(G) = \min_{S \subseteq V} \frac{|E(S, V \setminus S)|}{|V \cap V \cap V \cap V}$

vol(S) ≤vol(V\S) ↑

"volume" of S:

sum of degrees in S

G is a ϕ -expander if $\overline{\Phi}(6) \ge \phi$ Why expanders? [KT'15]

Claim: in a ϕ -expander, any α -approx mincut ∂S ($|\partial S| \leq \alpha \lambda$) must have $|S| \leq \alpha / \phi$

sum of degrees in S

Conductance of a graph: $\overline{\Phi}(G) = \min_{S \subseteq V} \frac{|E(S, V \setminus S)|}{|Volume|}$ Conductance of a graph: $\overline{\Phi}(G) = \min_{Volume|} \frac{|E(S, V \setminus S)|}{|Volume|}$ Conductance of a graph: $\overline{\Phi}(G) = \min_{Volume|} \frac{|E(S, V \setminus S)|}{|Volume|}$

G is a ϕ -expander if $\overline{\Phi}(6) \ge \phi$

Why expanders? [KT'15]

Claim: in a ϕ -expander, any α -approx mincut ∂S ($|\partial S| \leq \alpha \lambda$) must have $|S| \leq \alpha / \phi$

unbalanced: ISI ≤ %

Structural representation of near-mincuts: all unbalanced cuts!

Conductance of a graph:
$$\overline{\Phi}(G) = \min_{S \subseteq V} \frac{|E(S,V \setminus S)|}{|Vol(S)|}$$

Coincide the average of $\overline{\Phi}(G) = \min_{Vol(S) \leq Vol(V \setminus S)} \frac{|E(S,V \setminus S)|}{|Vol(S)|}$

G is a
$$\phi$$
-expander if $\overline{\Phi}(6) \ge \phi$

Why expanders? [KT'15]

Claim: in a ϕ -expander, any α -approx mincut ∂S ($|\partial S| \leq \langle \lambda \rangle$)

Proof: Suppose
$$vol(S) \le vol(v \mid S)$$

 $vol(S) = \sum_{v \in S} deg(v) \ge \sum_{v \in S} \lambda = \lambda \mid S \mid [\lambda = mincut]$

$$[\lambda = \min cut]$$

sum of degrees in S

unbalanced: ISI ≤ %

Structural representation of near-mincuts: all unbalanced cuts!

Conductance of a graph:
$$\Phi(G) = \min_{S \subseteq V} \frac{1E(S)}{V(S)}$$

vol(S) \(\sum \volume \) of S:

sum of degrees in S

G is a ϕ -expander if $\overline{\Phi}(6) \ge \phi$

Why expanders? [KT'15]

Claim: in a ϕ -expander, any α -approx mincut ∂S ($|\partial S| \leq \langle \lambda \rangle$)

$$vol(s) = 2 deg(v) \ge \sum_{s} \lambda = \lambda |s|$$

$$[\lambda = \min cut]$$

$$\frac{1}{|S|} |\partial S| = \lambda$$

Structural representation of near-mincuts: all unbalanced cuts!

First goal: ensure that $|\partial_{H}S| \approx_{(I+E)} p |\partial_{G}S|$ for all unbal. cuts $|\partial S| \leq \frac{\alpha}{\phi}$ (includes all $|\alpha|$ -approximate mincuts for a $|\phi|$ -expander)

First goal: ensure that $|\partial_H S| \approx_{(I+E)} p |\partial_G S|$ for all unbal. cuts $|\partial_S S| \leq \frac{\alpha}{\phi}$ (includes all $|\alpha|$ -approximate mincuts for a $|\phi|$ -expander)

Lemma: suffices to ensure that:
$$\cdot \operatorname{deg}_{H}(v) \approx \rho \cdot \operatorname{deg}(v) \pm \varepsilon \left(\frac{\phi}{\alpha}\right)^{2} \lambda \ \forall v$$

 $\cdot \#_{H}(u,v) \approx \rho \cdot \#_{G}(u,v) \pm \varepsilon \left(\frac{\phi}{\alpha}\right)^{2} \lambda \ \forall u,v$

•
$$\#_H(u,v) \approx p \cdot \#_G(u,v) \pm \varepsilon (\cancel{\beta})^2 \lambda \forall u,v$$

First goal: ensure that $|\partial_{H}S| \approx_{(I+E)} p |\partial_{G}S|$ for all unbal. cuts $|\partial S| \leq \frac{\alpha}{\phi}$ (includes all $|\alpha|$ -approximate mincuts for a $|\phi|$ -expander)

First goal: ensure that $|\partial_{H}S| \approx_{(I+E)} p |\partial_{G}S|$ for all unbal. cuts $|\partial_{G}S| \leq \frac{\alpha}{\phi}$ (includes all $|\alpha|$ -approximate mincuts for a $|\phi|$ -expander)

Lemma: suffices to ensure that: $e^{-deg_H(v)} \approx \rho \cdot deg_{(v)} \pm \epsilon \left(\frac{\phi}{\alpha}\right)^2 \lambda \quad \forall v$ only n+m constraints! $e^{-deg_H(v)} \approx \rho \cdot \#_G(u,v) \pm \epsilon \left(\frac{\phi}{\alpha}\right)^2 \lambda \quad \forall (u,v) \in E$

First goal: ensure that $|\partial_H S| \approx_{(I+E)} p |\partial_G S|$ for all unbal. cuts $|\partial_F S| \leq \frac{\alpha}{\phi}$ (includes all $|\alpha|$ -approximate mincuts for a $|\phi|$ -expander)

Lemma: suffices to ensure that: $(\cdot, \deg_{H}(v)) \approx \rho \cdot \deg(v) \pm \epsilon (\frac{\phi}{\alpha})^{2} \lambda \forall v$ Proof: $(\cdot, v) \approx \rho \cdot \#_{G}(u, v) \pm \epsilon (\frac{\phi}{\alpha})^{2} \lambda \forall (u, v) \in E$ Graph Laplacian: algebraic representation of cuts $(\cdot, v) = \epsilon \cdot (\frac{\phi}{\alpha})^{2} \lambda \forall (u, v) \in E$

$$G = \int_{z}^{x} L_{G} = \int_{z}^{x} \left[\int_{-2}^{+2} \frac{(-2)^{-0}}{(-2)^{-1}} \right]$$

$$(y,y): +deg(y)$$

(x,y): -(# parallel (x,y) edges)

First goal: ensure that $|\partial_H S| \approx_{(I+E)} p |\partial_G S|$ for all unbal. cuts $|\partial_S S| \leq \frac{\alpha}{\phi}$ (includes all $|\alpha|$ -approximate mincuts for a $|\phi|$ -expander)

Lemma: suffices to ensure that: $(\cdot, \deg_{H}(v)) \approx \rho \cdot \deg(v) \pm \epsilon (\frac{\phi}{\alpha})^{2} \lambda \forall v$ Proof: $(\cdot, v) \approx \rho \cdot \#_{G}(u, v) \pm \epsilon (\frac{\phi}{\alpha})^{2} \lambda \forall u, v \in E$ Graph Laplacian: algebraic representation of cuts $(x, y, z) \in E$

$$\forall S \subseteq V: |\partial_{G}S| = 1_{S}^{T} L_{G} 1_{S}^{V}: 1 \text{ if ves}$$

$$1_{S} \subseteq \{0,1\}^{V}: 1 \text{ if ves}$$
0 if ves

$$L_{G} = \begin{cases} x & y & z \\ +2 & -2 & 0 \\ -2 & +3 & -1 \\ 0 & -1 & +1 \end{cases}$$

$$(y,y): +deg(y)$$

$$(x,y): -(# parallel (x,y) edges)$$

First goal: ensure that $|\partial_H S| \approx_{(I+E)} p |\partial_G S|$ for all unbal. cuts $|\partial_F S| \leq \frac{\alpha}{\phi}$ (includes all $|\alpha|$ -approximate mincuts for a $|\phi|$ -expander)

Lemma: suffices to ensure that: $(\cdot, \deg_H(v)) \approx \rho \cdot \deg(v) \pm \epsilon (\frac{\phi}{\alpha})^2 \lambda \forall v$ Proof: $(u,v) \approx \rho \cdot \#_G(u,v) \pm \epsilon (\frac{\phi}{\alpha})^2 \lambda \forall (u,v) \in E$ Graph Laplacian: algebraic representation of cuts $(x,y) \in E$

(y,y): +deg(y)

(x,y): -(# parallel (x,y) edges)

$$VS \subseteq V: |\partial_{G}S| = \mathbf{1}_{S}^{T} L_{G} \mathbf{1}_{S}$$

$$\mathbf{1}_{S} \subseteq \{0,1\}^{V}: 1 \text{ if ves}$$

$$0 \text{ if ves} \geq (0/4)^{2}$$
Consider unbalanced $\partial S (|S| \leq 4/4)$.
$$|\partial_{H}S| = (\sum_{v \in S} \mathbf{1}_{v}^{T}) L_{H} (\sum_{v \in S} \mathbf{1}_{v}) = \sum_{u,v \in S} \mathbf{1}_{u}^{T} L_{H} \mathbf{1}_{v} = \sum_{u,v \in S} \{-\#_{H}(u,v) \text{ if } u \neq v\}$$

First goal: ensure that $|\partial_H S| \approx_{(I+E)} p |\partial_G S|$ for all unbal. cuts $|\partial_F S| \leq \frac{\alpha}{\phi}$ (includes all $|\alpha|$ -approximate mincuts for a $|\phi|$ -expander)

Lemma: suffices to ensure that: $(\cdot, \deg_{H}(v)) \approx \rho \cdot \deg(v) \pm \epsilon (\frac{\phi}{\alpha})^{2} \lambda \forall v$ Proof: $(\cdot, v) \approx \rho \cdot \#_{G}(u, v) \pm \epsilon (\frac{\phi}{\alpha})^{2} \lambda \forall u, v \in E$ Graph Laplacian: algebraic representation of cuts $(x, y, z) \in E$

$$dS \subseteq V: |\partial_{G}S| = 1_{S}^{T} L_{G} 1_{S}^{V}: 1 \text{ if ves}$$

$$1_{S} \subseteq \{0,1\}^{V}: 1 \text{ if ves}$$
0 if ves

$$G = \chi^{2}$$

$$L_{G} = \begin{cases} x & (+2) & (-2) &$$

$$\forall S \subseteq V \colon |\partial_{G}S| = \mathbf{1}_{S}^{T} L_{G} \mathbf{1}_{S}$$

$$\mathbf{1}_{S} \subseteq \{0,1\}^{V} \colon \mathbf{1} \text{ if } v \in S$$

$$0 \text{ if } v \notin S \neq \{0,1\}^{V} \colon \mathbf{1} \text{ if } v \in S$$

$$0 \text{ if } v \notin S \neq \{0,1\}^{V} \quad (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$(x,y) \colon -(\# \text{ parallel$$

First goal: ensure that $|\partial_{H}S| \approx_{(I+E)} p |\partial_{G}S|$ for all unbal. cuts $|\partial S| \leq \frac{\alpha}{\phi}$ (includes all $|\alpha|$ -approximate mincuts for a $|\phi|$ -expander)

Lemma: suffices to ensure that: $(\cdot, \deg_H(v)) \approx \rho \cdot \deg_H(v) \pm \epsilon (\frac{\phi}{\alpha})^2 \lambda \forall v$ Proof: $(\cdot, v) \pm \epsilon (\frac{\phi}{\alpha})^2 \lambda \forall (u, v) \in E$ Graph Laplacian: algebraic representation of cuts $(x, y, z) \in E$

Represents cuts well:

$$|S \subseteq V: |\partial_G S| = 1_S^T L_G 1_S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$|A_G \subseteq \{0,1\}^V: 1 \text{ if } v \in S$$

$$\forall S \subseteq V \colon |\partial_{G}S| = \mathbf{1}_{S}^{T} L_{G} \mathbf{1}_{S}$$

$$\mathbf{1}_{S} \subseteq \{0,1\}^{V} \colon \mathbf{1} \text{ if ves } (y,y) \colon deg(y)$$

$$0 \text{ if ves } (y,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$1_{S} \subseteq \{0,1\}^{V} \colon \mathbf{1} \text{ if ves } (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$1_{S} \subseteq \{0,1\}^{V} \colon \mathbf{1} \text{ if ves } (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges})$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges}$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges}$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges}$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges}$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges}$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges}$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges}$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges}$$

$$1_{S} = (x,y) \colon -(\# \text{parallel } (x,y) \text{ edges}$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges}$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges}$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges}$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges}$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel } (x,y) \text{ edges}$$

$$1_{S} = (x,y) \colon -(\# \text{ parallel$$

First goal: ensure that $|\partial_H S| \approx_{(I+E)} p |\partial_G S|$ for all unbal. cuts $|\partial_S S| \leq \frac{\alpha}{\phi}$ (includes all $|\alpha|$ -approximate mincuts for a $|\phi|$ -expander)

Efficient algorithm via pessimistic estimators:

- Compute Pr(v fail): Chernoff bound of Pr[deg_H(v) ≉ p·deg_G(v)] $\widetilde{P}_{r}(u,v \text{ fail})$: Chernoff bound of $\Pr[\#_{H}(u,v) \not\approx p \cdot \#_{G}(u,v)]$ $= \sum_{v} \widetilde{P}_{r}(v \text{ fail}) + \sum_{u,v} \widetilde{P}_{r}(u,v \text{ fail}) << 1$

First goal: ensure that $|\partial_H S| \approx_{(I+E)} p |\partial_G S|$ for all unbal. cuts $|\partial_F S| \leq \frac{\alpha}{\phi}$ (includes all $|\alpha|$ -approximate mincuts for a $|\phi|$ -expander)

Efficient algorithm via pessimistic estimators:

- Compute Pr(v fail): Chernoff bound of Pr[deg_H(v) ≉ p·deg_G(v)]
 Pr(u,v fail): Chernoff bound of Pr[#_H(u,v) ≉ p·#_G(u,v)]

 ≥ Pr(v fail) + ∑ Pr(u,v fail) << 1

 given edge e, update Pr(·) as prob. conditional on choosing/skipping e
- given edge e, update $\Re(\cdot)$ as prob. conditional on choosing/skipping (only need to update 3 terms)
- choose/skip e depending on which is smaller

H preserves unbalanced cuts, but not balanced cut!

H preserves unbalanced cuts, but not balanced cut!

Recall goal: for $\partial_6 S^*$ mincut in G, $\partial_H S^*$ is 1.1-approx mincut in H

H preserves unbalanced cuts, but not balanced cut!

Recall goal: for $\partial_6 S^*$ mincut in G, $\partial_H S^*$ is 1.1-approx mincut in H

H preserves unbalanced cuts, but not balanced cut!

Recall goal: for $\partial_6 S^*$ mincut in G, $\partial_H S^*$ is 1.1-approx mincut in H

Solution: force balanced cuts to have weight $\geq \rho \lambda$

H preserves unbalanced cuts, but not balanced cut!

H ∪ expander \
Recall goal: for ∂₆S* mincut in G, ∂_HS* is 1.1-approx mincut in H

Solution: force balanced cuts to have weight $\geq \rho \lambda$

Solution: "overlay" an arbitrary $\Theta(1)$ -expander, "lightly weighted" s.t.

- mincut of G increases by $\leq \epsilon \rho^{\lambda}$
- any balanced cut increases by $\geq \rho \lambda$

H preserves unbalanced cuts, but not balanced cut!

- Recall goal: for 265 mincut in G, 245 is 1.1-approx mincut in H
- Solution: force balanced cuts to have weight $\geq \rho \lambda$
- Solution: "overlay" an arbitrary $\Theta(1)$ -expander,
 - "lightly weighted" s.t.
 - mincut of G increases by $\leq \epsilon \rho^{\lambda}$
 - any balanced cut increases by $\geq \rho \lambda$

H preserves unbalanced cuts, but not balanced cut!

Recall goal: for 265* mincut in G, 245* is 1.1-approx mincut in H

Solution: force balanced cuts to have weight $\geq \rho \lambda$

Solution: "overlay" an arbitrary $\Theta(1)$ -expander, "lightly weighted" s.t.

- mincut of G increases by $\leq \epsilon \rho \lambda$
- any balanced cut increases by $\geq \rho \lambda$

Not a (1+E)approximate
cut sparsifier,
but OK for
mincut

Expander: Recap

Preserve all unbalanced cuts up to (1±8) by preserving degrees and parallel edges

Force balanced cuts to be large by overlaying an arbitrary expander

Expander of Expanders

Expander decomposition of G: partition V into $V_1,...,V_k$ s.t. $G[V_i]$ is an expander for all i

Expander decomposition of G:

partition V into $V_1,...,V_k$ s.t.

G[V_i] is an expander for all i Structure of unbalanced cuts?

How to define unbalanced?

Structure of unbalanced cuts? How to define unbalanced?

How to define unbalanced?

DCV: difference

How to define unbalanced?

How to define unbalanced?

How to define unbalanced?

Expander of Expanders $S = \bigcup_{v \in S_2} \overline{v} \triangle D$ $S = \bigcup$

Structure of unbalanced cuts?

DCV: difference

How to define unbalanced?

Expander of Expanders

each edge e € E How to define unbalanced? belongs to ≤4 of them

Expander of Expanders

Recursive Expander Decomposition

Expander decomposition of G: partition V into $V_1,...,V_k$ s.t. $G[V_i]$ is a ϕ -expander for all i

Recursive Expander Decomposition

Expander decomposition of G:

partition V into $V_1,...,V_k$ s.t. $G[V_i]$ is a ϕ -expander for all i

- # inter-cluster edges is ≤ \$ fraction >> ≤ logy m levels
- "boundary-linked" property to upper bound 18521, 18531, ... [GRST SODA'21]

Conclusion

Deterministic mincut in m^{1+o(1)} time by derandomizing skeleton construction in [Karger '96]

Open questions:

- deterministic (1+ E)-approx cut sparsifier?
 - requires understanding structure of balanced cuts
 - spectral approach? Derandomize Õ(m) time [LS'17]?
- deterministic mincut in m polylog(n) time?
 - no deterministic expander decomp. known with polylog(n) factors