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Sample each edge in G with prob p := 1_0{%;:. Let H = sampled edges

Thm [Karger] w.h.p., each cut 23 (ScV) satisfies
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Derandomization?

Even verification is hard! 2" cuts to check
Need to “union bound” more efficiently
Solution: structural representation of cuts (rest of this talk)

Derandomization: structural representation of target objects
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Spectral approach: H is a (1+¢&)-approximate cut sparsifier of G if

—
based on L, ~ (1) L, (spectral sparsifier)
eigenvalues A

LaP|acian ma+r|)( 0{' G

)
=> deterministic sparsification in mn3 time [BSS 'Q]
(also randomized in S(m) time [LS'17])

of the
Laplacian

So far, all|deterministic (1+ £ )-approximate sparsifiers use this
spectral representation of cuts

This work: combinatorial representation via
expander decomposition



Structural Representation: Roadmap

1. Expander case: why are expanders easy?
2. "Expander of expanders”: how to generalize?

3. Expander decomposition and additional challenges
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i § ; - approximate
lightly weighted” s.t. sut diskraifiee

- mincut of G increases by < SPA but OK for
- any balanced cut increases by 2 PA —



Expander: Recap

Preserve all unbalanced cuts up to (1££) by
preserving degrees and parallel edges

Force balanced cuts to be large by overlaying an
arbitrary expander
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Expander decomposition of G:
partition Vinto V,,...V s.t.
G[V.] i1s an expander for all i
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partition Vinto V,,...Vy s.t.

G[V.] is an expander for all |
Structure of unbalanced cuts?

How to define unbalanced?
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DEV: difference
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Structure of unbalanced cuts?

How to define unbalanced?
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Def: S is unbalanced if |D| < °’/¢ and (S| < /¢
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P
DEV: difference

once a|i3ne
Structure of unbalanced cuts?

How to define unbalanced?

of
Def: S is unbalanced if |D| < °‘/¢ and (S| £ /¢
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DEV: difference

once a|i3ne
Structure of unbalanced cuts?

How to define unbalanced?

of
Def: S is unbalanced if |D| < °‘/¢ and (S|4 /¢
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<ofy <%
terms terms

Structure of unbalanced cuts?
How to define unbalanced?

of
Def: S is unbalanced if |D| < °‘/¢ and (S|4 /¢



<\ Expander of Expanders

<ofy <%
terms terms

P
DEV: difference

once u“aneo‘ for Some VEV/,

Structure of unbalanced cuts?
How to define unbalanced?

o/
Def: S is unbalanced if |D| < °‘/¢ and (S|4 /¢



<\ Expander of Expanders

Nt
=2ﬂ; +Z iﬁu
veS) uebd
- J
<ofy <%
‘_/5(7 : terms terms
uffices to
DEV: difference preserve these! /-ﬂx L(,ﬂ. or

i “"ﬂ“ei O(m+n) total: E(
Structure of unbalanced cuts*” each edge e € E

How to define unbalanced? belongs to <4 of them

o/
Def: S is unbalanced if |D| < °‘/¢ and (S, < /¢



o<\ Expander of Expander

<ofy <%
terms terms

V dor Some Uev
E(}j: {u for Some ut-;VZ
How to define unbald Of exXpa nders -
o/
Def: S is unbalanced if |D| < °’/¢ and (S| < /¢




Recursive Expander Decomposition
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Expander decomposition of G:

partition Vinto V,,...Vy s.t.
G[V,] is a p-expander for all |



Recursive Expander Decomposition

2 -5

{0 é’ — [
s.( '
oS
Expander decomposition of G:
partition Vinto V,,...V s.t.
G[V,] is a p-expander for all |

- # inter-cluster edges is £¢ frackon = £ \Djwm levels
- “boundary-linked” property to upper bound |332|, |953|, [GRST SODA‘21]
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[GRST SODA'21]


Conclusion

Deterministic mincut in m**°!) time by derandomizing
skeleton construction in [Karger '96]

Open questions:
- deterministic (1+ £)-approx cut sparsifier?
- requires understanding structure of balanced cuts
- spectral approach? Derandomize O(m) time [LS'17] ?
- deterministic mincut in m polylog(n) time?
- no deterministic expander decomp. known with
polylog(n) factors
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