Deterministic Mincut in Almost Linear Time

Jason Li (CMU)

Work done while visiting Microsoft Research, Redmond
Algorithms Group: Sivakanth Gopi, Janardhan Kulkarni,
Jakub Tarnawski, Sam Wong

Deterministic Mincut in Almost Linear Time

or
A Structural Representation of
the Cuts of a Graph

Jason Li (CMU)

Work done while visiting Microsoft Research, Redmond
Algorithms Group: Sivakanth Gopi, Janardhan Kulkarni,
Jakub Tarnawski, Sam Wong

Introduction

This talk: all graphs are undirected and unweighted

Introduction

This talk: all graphs are undirected and unweighted

(Global) mincut: given a graph, find a minimum # edges whose
removal disconnects the graph

Introduction

This talk: all graphs are undirected and unweighted

(Global) mincut: given a graph, find a minimum # edges whose
removal disconnects the graph

Randomized contraction: 6(n2) time [Karger, Stein ‘96]

Introduction

This talk: all graphs are undirected and unweighted

(Global) mincut: given a graph, find a minimum # edges whose
removal disconnects the graph

Randomized contraction: 6(n2) time [Karger, Stein ‘96]

Sparsification + tree packing: 8(m) time randomized [Karger ‘96]

Introduction

This talk: all graphs are undirected and unweighted

(Global) mincut: given a graph, find a minimum # edges whose
removal disconnects the graph

Randomized contraction: 6(n2) time [Karger, Stein ‘96]
Sparsification + tree packing: 8(m) time randomized [Karger ‘96]

[Karger ‘96]: deterministic S(m) time algorithm? (Best was 6(mn))

Introduction

This talk: all graphs are undirected and unweighted

(Global) mincut: given a graph, find a minimum # edges whose
removal disconnects the graph

Randomized contraction: 6(n2) time [Karger, Stein ‘96]
Sparsification + tree packing: 8(m) time randomized [Karger ‘96]
[Karger ‘96]: deterministic S(m) time algorithm? (Best was 6(mn))

- [Kawarabayashi, Thorup ‘15]: S(m) time for simple graphs

Introduction

This talk: all graphs are undirected and unweighted

(Global) mincut: given a graph, find a minimum # edges whose
removal disconnects the graph

Randomized contraction: 6(n2) time [Karger, Stein ‘96]
Sparsification + tree packing: s(m) time randomized [Karger ‘96]
[Karger ‘96]: deterministic S(m) time algorithm? (Best was S(mn))
- [Kawarabayashi, Thorup ‘15]: S(m) time for simple graphs
- [L, Panigrahi ‘20]: polylog(n) many exact s-t maxflows

Introduction

This talk: all graphs are undirected and unweighted

(Global) mincut: given a graph, find a minimum # edges whose
removal disconnects the graph

Randomized contraction: 6(n2) time [Karger, Stein ‘96]
Sparsification + tree packing: s(m) time randomized [Karger ‘96]
[Karger ‘96]: deterministic S(m) time algorithm? (Best was S(mn))

- [Kawarabayashi, Thorup ‘15]: S(m) time for simple graphs

- [L, Panigrahi ‘20]: polylog(n) many exact s-t maxflows

- This talk: m!*°!) time by derandomizing [Karger '96]

Introduction

This talk: all graphs are undirected and unweighted

(Global) mincut: given a graph, find a minimum # edges whose
removal disconnects the graph

Randomized contraction: 6(n2) time [Karger, Stein ‘96]
Sparsification + tree packing: 8(m) time randomized [Karger '96]
[Karger ‘96]: deterministic S(m) time algorithm? (Best was 6(mn) }
- [Kawarabayashi, Thorup ‘15]: 8(m) time for simple graphs
- [L, Panigrahi ‘20]: polylog(n) many exact s-t maxflows

- This talk: m!*°!) time by derandomizing [Karger '96]
Along the way: structural representation of cuts

Introduction

This talk: all graphs are undirected and unweighted

(Global) mincut: given a graph, find a minimum # edges whose
removal disconnects the graph

Randomized contraction: 6(n2) time [Karger, Stein '96] /
Sparsification + tree packing: 8(m) time randomized [Karger '96]
[Karger ‘96]: deterministic S(m) time algorithm? (Best was 6(mn))

- [Kawarabayashi, Thorup ‘15]: S(m) time for simple graphs

- [L, Panigrahi ‘20]: polylog(n) many exact s-t maxflows /

- This talk: m**°(}) time by derandomizing [Karger ‘'96] Weighted
Along the way: structural representation of cuts

Mincut by Sparsification + Tree Packing

Thm [Karger ‘96]: Suppose given a skeleton graph H s.t.
- H has O(m) edges
- The mincut of H is n°)
- For the mincut 2;S* in G,
the cut 9,S* Is a 1.1-approximate mincut in H
Then, can compute exact mincut in G in mn°1) additional time

Mincut by Sparsification + Tree Packing

Thm [Karger ‘96]: Suppose given a skeleton graph H s.t.
- H has O(m) edges
- The mincut of H is n°)
- For the mincut 2,S* in G,
the cut 9,S*Is a 1.1-approximate mincut in H
Then, can compute exact mincut in G in mn°(1) additional time

Algo (given skeleton):
- Compute a tree packing of n°) trees into H
. %,
- One of these trees 2-respects the mincut 95 in G

Mincut by Sparsification + Tree Packing

Thm [Karger ‘96]: Suppose given a skeleton graph H s.t.
- H has O(m) edges
- The mincut of H is n°)
- For the mincut 2;S* in G,
the cut 9,S*I1s a 1.1-approximate mincut in H
Then, can compute exact mincut in G in mn°1) additional time

Algo (given skeleton): mincut
- Compute a tree packing of n°!) trees into H o
: * . €2 edges
- One of these trees 2-respects the mincut 9¢9 in G of T'oroee

the cut

Mincut by Sparsification + Tree Packing

Thm [Karger ‘96]: Suppose given a skeleton graph H s.t.
- H has O(m) edges
- The mincut of H is n°)
- For the mincut 2;S* in G,
the cut 9,S*I1s a 1.1-approximate mincut in H
Then, can compute exact mincut in G in mn°1) additional time

Algo (given skeleton): mincut
- Compute a tree packing of n°!) trees into H P
: * . €2 edges
- One of these trees 2-respects the mincut 9¢9 in G of Fomes

the cut

- For each of the n°") trees,
compute the minimum 2-respecting cut in G in O(m) time

Mincut by Sparsification + Tree Packing

Thm [Karger ‘96]: Suppose given a skeleton graph H s.t.
- H has O(m) edges
- The mincut of H is n°)
- For the mincut 9¢S*in G,
the cut 9,S* Is a 1.1-approximate mincut in H
Then, can compute exact mincut in G in mn°1) additional time

Algo (given skeleton): deterministic! Min Cut
- Compute a tree packing of n°!) trees into H PO,
" * . €2 edges

- One of these trees 2-respects the mincut 9¢9 in G of T crons

the cut

- For each of the n°") trees,
compute the minimum 2-respecting cut in G in O(m) time

Mincut by Sparsification + Tree Packing

Thm [Karger ‘96]: Suppose given a skeleton graph H s.t.
- H has O(m) edgesKarger: randomized skeleton via graph sparsification
- The mincut of H is n°!)
- For the mincut 9¢S*in G,
the cut 9,S*Is a 1.1-approximate mincut in H
Then, can compute exact mincut in G in mn°1) additional time

Algo (given skeleton): deterministic! Min cut
- Compute a tree packing of n°!) trees into H N2 respect;
" * . €2 edges

- One of these trees 2-respects the mincut 9¢9 in G of T cxon

the cut

- For each of the n°") trees,
compute the minimum 2-respecting cut in G in O(m) time

Mincut by Sparsification + Tree Packing

Thm [Karger ‘96]: Suppose given a skeleton graph H s.t.
- H has O(m) edgeSKarger: randomized skeleton via graph sparsification

- The mincut of H is n°! (1+&) approximate cut sparsifier
- For the mincut 9¢S*in G, & suffices: 3W s.t. Y$S: W-[2,,S|= (1££)9gS)|
the cut 9,S*Is a 1.1-approximate mincut in H

Then, can compute exact mincut in G in mn°1) additional time

Algo (given skeleton): deterministic! Min ot
- Compute a tree packing of n°!) trees into H N2 respect
: * . €2 edges

- One of these trees 2-respects the mincut 9¢9 in G of T oroes

the cut

- For each of the n°!) trees,
compute the minimum 2-respecting cut in G in O(m) time

S
keleton Graph: Sparsification

Skeleton Graph: Sparsmcatlon

Sample each edge in G with prob p := —573— Let H = sampled edges

Thm [Karger] w.h.p., each cut 25 (ScV) satisfies

9,5 = (12€) p196S|

E[lausl]

Skeleton Graph: Sparsification

Sample each edge in G with prob p := 1—05%3. Let H = sampled edges

Thm [Karger] w.h.p., each cut 25 (ScV) satisfies

9,5 = (12€) p196S|

E(|3.S!]
Proof: “smart union bound over all cuts”

Skeleton Graph: Sparsification

Sample each edge in G with prob p := 1—05—;’3. Let H = sampled edges

Thm [Karger] w.h.p., each cut 25 (ScV) satisfies

3.5 % (12€) p196S|
E[Iao-lSl]

Proof: “smart union bound over all cuts”
e £ cuts of size < o)

Skeleton Graph: Sparsification

Sample each edge in G with prob p := _ 10019 | ot H = sampled edges

Thm [Karger] w.h.p., each cut 25 (ScV) satisfies
9.5 = (12€) p196S|

Skeleton Graph: Sparsification

Sample each edge in G with prob p := _ 10019 | ot H = sampled edges

Thm [Karger] w.h.p., each cut 23 (ScV) satisfies
9.5 = (12€) p196S|

E(|3.S!]
Proof: “smart union bound over all cuts”

o 4n cuts of ¢ize < ol
¢ = [Chernotf]
P([Cud'as u{' S12¢ A’Bo(g ‘FN|S J 4 3,(C 'no |

= P([Somi cut o": S1ze XA ‘FaﬂS] 5 2“ hgd- Y?

Skeleton Graph: Sparsification

Sample each edge in G with prob p := _ 10019 | ot H = sampled edges

Thm [Karger] w.h.p., each cut 25 (ScV) satisfies
3.5 = (12€) p196S|

Skeleton Graph: Sparsification

Sample each edge i ' = 100 23
ge in G with prob p := _iﬁL Let H = sampled edges

Thm [Karger] w.h.p., each cut 25 (ScV) satisfies
9,5 = (12€) p196S|
HEN)

Derandomization?

Skeleton Graph: Sparsification

Sample each edge in G with prob p := 1—05—;93. Let H = sampled edges

Thm [Karger] w.h.p., each cut 25 (ScV) satisfies
9,5 = (12€) p196S|
HEN)

Derandomization?

Even verification is hard! 2" cuts to check
Need to “union bound” more efficiently

Skeleton Graph: Sparsification

Sample each edge in G with prob p := 1_0{%3. Let H = sampled edges

Thm [Karger] w.h.p., each cut 25 (ScV) satisfies
9,S| = (12€) p196SI
HEN)

Derandomization?

Even verification is hard! 2" cuts to check
Need to “union bound” more efficiently
Solution: structural representation of cuts (rest of this talk)

Skeleton Graph: Sparsification

Sample each edge in G with prob p := 1_0{%;:. Let H = sampled edges

Thm [Karger] w.h.p., each cut 23 (ScV) satisfies
laHSl iy (liﬁ) & |3(,SI
E(19,S!]

Derandomization?

Even verification is hard! 2" cuts to check
Need to “union bound” more efficiently
Solution: structural representation of cuts (rest of this talk)

Derandomization: structural representation of target objects

Structural Representation of Cuts

Spectral approach: H is a (1+£&)-approximate cut sparsifier of G If

LH ~ (11¢) I,_C7 (spectral sparsifier)

Lap|alutian matrix ot G

Structural Representation of Cuts

Spectral approach: H is a (1+¢&)-approximate cut sparsifier of G if

L
based on L, ~ (1) L, (spectral sparsifier)
eigenvalues A
of the Laplacian matriX of O

Laplacian

Structural Representation of Cuts

Spectral approach: H is a (1+¢&)-approximate cut sparsifier of G if

based on L, ~ (1) L, (spectral sparsifier)
eigenvalues A
of the LQP|acian moatriX ot G
o J
Laplacian => deterministic sparsification in mn3 time [BSS 'Q]

(also randomized in O(m) time [LS'17])

Structural Representation of Cuts

Spectral approach: H is a (1+¢&)-approximate cut sparsifier of G if

based on L, ~ (1ze) L, (spectral sparsifier)

eigenvalues A
of the Laphcian motrix of G

Laplacian => deterministic sparsification in mn3 time [BSS”Q]
(also randomized in O(m) time [LS'17])

So far, all|deterministic (1+ £)-approximate sparsifiers use this
spectral representation of cuts

Structural Representation of Cuts

Spectral approach: H is a (1+¢&)-approximate cut sparsifier of G if

—
based on L, ~ (1) L, (spectral sparsifier)
eigenvalues A

LaP|acian ma+r|)(0{' G

)
=> deterministic sparsification in mn3 time [BSS 'Q]
(also randomized in S(m) time [LS'17])

of the
Laplacian

So far, all|deterministic (1+ £)-approximate sparsifiers use this
spectral representation of cuts

This work: combinatorial representation via
expander decomposition

Structural Representation: Roadmap

1. Expander case: why are expanders easy?
2. "Expander of expanders”: how to generalize?

3. Expander decomposition and additional challenges

Expa nders\)|
. E(S,V\S
Conductance of a graph: $(6)= ?;\) I vol (5)

vol(9) £vol(V\S) A

W ot S
G is a §-expander if $(6)2¢ “::\:':% dggrsecs nS

G
E(s,V\s)=1
vol(S) =7

S

Expa nders\ >|
. E(S,V\S
Conductance of a graph: $(6)= ?_é_r\) I vol (S)

vol(9) £vol(V\S) A

] .
G is a ¢-expander if §(6)2¢ “::\:ﬂc:% al:;rsecs nS

G
E(SV\s)=1
@ vol(S)=7#
S
Why expanders? [KT'l':']

Claim:in a ¢-expander, any O(-approx mincut 95 (|3$| <o)
must have |S|4%%

Expa nders\ >|
. E(S,V\S
Conductance of a graph: $(6)= ;n;\) I vol (5)

vol(9) £vol(V\S) A

] .
G is a §-expanderif $(6)29 “::‘:ﬂc:% digrsees in'S

G
E(SV\s)=1
@ vol(S)= 7
S
Why expanders? [KT'l':']

Claim: in a ¢-expander, any o-approx mincut 9S (1951 £ o)
must have |S|4 %3

unbalanced: I1SI £ %
Structural representation of near-mincuts: all unbalanced cuts!

Expa nders\ |
. E(S,V\S
Conductance of a graph: $(6)= ;";’.) I vol (5)

vol(9) £vol(V\S) A

] .
G is a §-expanderif $(6)29 “::‘:";% digrsecs in'S

G
E(S,V\s)=1
@ vol(S)= 7
S
Why expanders? [KT'l':']

Claim: in a ¢-expander, any o-approx mincut 9S (195 £)
must have |SI1£%%
Proof: Suppose vol(S) £vel(V\5)

vol(5)=2 deg(v) 2 2 A =A S| [A=mincut] @ 5S|=19

VES vES S

unbalanced: I1SI £ %
Structural representation of near-mincuts: all unbalanced cuts!

jmli
Rectangle

jmli
Typewriter
v

Expa nders\ >|
. E(S,V\S
Conductance of a graph: $(6)= ;n;\\/ I vol (5)

vol(9) £vol(V\S)

M .
G is a §-expanderif $(6)29 “::‘:“c:% d‘igrsees nS

G
E(sV\s)=1
@ vol(S)= 7
S
Why expanders? (kT5]

Claim:in a qf)-expander, any O{-approx mincut 95 (I3$| <o)
must have |S|4%%

Proof: Suppose vol(S) £vel(V\S)
VO|F(§)=2 des(\}) >S5 A=AlS] [?\= mincut] @ 5S|=1

"> IE(s v\vse)sl oA & s
»< 2(6) £ Vo;(s) < als) AN /¢ unbalanced: ISI £ %

Structural representation of near-mincuts: all unbalanced cuts!

jmli
Rectangle

jmli
Typewriter
v

Derandomization: Unbalanced Cuts

: o
First goal: ensure that |94~ Pl9%S| for all unbal. cuts 2S: ISlé-g'
(includes all &-approximate mincuts for a ¢-expander)

Derandomization: Unbalanced Cuts
o«

First goal: ensure that [9,S1~,, pl%S| for all unbal. cuts 9S: IS4 ”
(includes all &-approximate mincuts for a ¢-expander)

2
Lemma: suffices to ensure that: « degy(v) % p- de9(v) ii(—g) A Wv
6 #H (U,V)% F'#G(u/v)ii(_g)zg Vu/\/

Derandomization: Unbalanced Cuts
o«

First goal: ensure that 9,51~ pl%S| for all unbal. cuts 9S: IS4 ”
(includes all at-approximate mincuts for a ¢-expander)

2
Lemma: suffices to ensure that: « degy(v) % p- de9(v) ii(—g) A Wv
s #H (U,V)% F'#G(u/v)ii(_g)zg Vu/\/

3 poraliel edges

Derandomization: Unbalanced Cuts
o«

First goal: ensure that [9,S1~,,, pl%S| for all unbal. cuts 9S: IS4 ”
(includes all a-approximate mincuts for a ¢-expander)

2
Lemma: suffices to ensure that: [« degy(v) = p-deg(v) ii(—g) A Vv
only n+m constraints! | ¢ #H (u,v) o P #G(U/v) ii(_g)'lg V(u/v)éE

$ poraliel edges

Derandomization: Unbalanced Cuts
o«

First goal: ensure that [9,S1~,, Pl%S| for all unbal. cuts 9S: IS4 ”
(includes all a-approximate mincuts for a ¢-expander)

2
Lemma: suffices to ensure that: [« degy(v) = p-deg(v) ii(—g) A Vv

PrOOf: only n+m constraints! | #H (u,v) ~ P #G(U/V) ii(_g)'Z) V(u/\JGE
- o . H poraliel edges
Graph Laplacian: algebraic representation of cuts Scx y 2
X X[+2 2).0
= - Y|-2 (+3)-
(yy): +degly)

(x,y): —(# parallel (x,y) edges)

Derandomization: Unbalanced Cuts
o«

First goal: ensure that [9,S1~,, pl%%S| for all unbal. cuts 9S: IS4 ”
(includes all a-approximate mincuts for a ¢-expander)

2
Lemma: suffices to ensure that: [+ degy(v) % p- de9(v) ii(—g) A Wv
Proof: only n+m constraints! | o #H (u,v) N P #G(U/V) ii(_g)'Z) V(u/\)(’E

. L i 3 porallel edges
Graph Laplacian: algebraic representation of cuts Xy 2

- Represents cuts well: X | = *['*2 OX.

= = y[-2 (H)-]

VS_C-.V: |aGS| — ﬂ;’LGﬂS G YQ‘E G = OZ‘-' +
p— (yy): +deg(y)

V. :
ﬂSS{O, 1} : g- : ::g (xy): —(# parallel (x,y) edges)

Derandomization: Unbalanced Cuts
First goal: ensure that [9yS1 %, P19S| for all unbal. cuts 9S: |S|£%

(includes all &-approximate mincuts for a ¢- expander)

Lemma: suffices to ensure that: [« degy(v) = p-deg(v) £ i(£ A Yv
Proof- only n+m constraints! #H (u,v) Xp #G(U v) ii(_ﬁ)) Viu \)eE

$ poraliel edges
Graph Laplacian: algebraic representation of cuts Xy 2

- Represents cuts well: = Q,. .= "[L’f 3
VSEV: [36S|=AsLedy e © loft s
11 co, 1} d v (w()é;ﬁe—gg)paranel (xy) edges)
0 i vES 4@@ o |

ConSider unbalanced 95 (|$|‘°’/¢) +o(wS

¢ de,H(v) i u=v
\BHSP“-‘(‘.%_‘./-ﬂ Ly (2]1) I’-u |'H :ﬂ- -3 (uv) f utv

uves U. GS

Derandomization: Unbalanced Cuts
o

First goal: ensure that |95 %, p19S| for all unbal. cuts 9S: |S|£';,;'
(includes all &-approximate mincuts for a ¢- expander)

Lemma: suffices to ensure that: [+ degy(v) % p- de9(v) :l:i(-ﬁ A Wv
Proof: only n+m constraints! #H (u,v) Xp #G(U v) ii(_ﬁ)) Viu \)eE

H poraliel edges
Graph Laplacian: algebraic representation of cuts Xy 2

- Represents cuts well: X[*2 502
(o= c?_ f = [—2 +3) -
VSEV: [3.S|= ﬂTLGﬂS : @ : df_(. .
vy): +degl(y
‘ﬂ C{O 1} o :{E ::2 ‘(d/¢ (x,y): _9(# parallel (x,y) edges)

£ e (S
Cof\S'M Mbd'ﬂnced oS ('Sl /¢) J‘\' deg () uev Pfjeﬂe(") (a’))?-a

\aHSlw(z/-ﬂ Ly (2]1) vesﬁ“ |'H :ﬂ- u eS -3 (uv) f utv p: #e(u v)

veS

Derandomization: Unbalanced Cuts
First goal: ensure that |9yS1 %, P19S| for all unbal. cuts 9S: |S|£%

(includes all &-approximate mincuts for a ¢- expander)
Lemma: suffices to ensure that: [+ degy(v) = p- deg(v) :l:i(—ﬁ A Yv

PfOOf only n+m constraints! #H (u,v) Xp #6(“ V) ii(-é)) V \)QE
3 poraliel edges
Graph Laplacian: algebraic representation of cuts b Sex v &
- Represents cuts well: | = X /’+2 2.0
= 2 (1)
VSEV: |368]= ﬂTL(,ﬂS - Q“z G <o/t
C{O 1} 4 i ves (W(). +)deg?) llel (xy) edges)
X,y # parallel (x,y) edges
owvs g e

Constder unbalenced 93 (|Sl‘°(/¢) fdm‘:ltju(v) i uzv Pﬂleﬂe(");}' (lﬂ)(-;—)m;
\BH S|""(Z’_ﬂ Ly (Z]1) vesﬁ“ LH ﬂ- Tuv eS -3 (uv) f utv pe H#(u,v) "

veS

Derandomization: Unbalanced Cuts

43

First goal: ensure that [9,S1%,, P|9%S| for all unbal. cuts 2S: (S 3

(includes all &-approximate mincuts for a ¢-expander)

Lemma: suffices to ensure that: | « degﬂ(v))x p- deg(v) ii(-g)i'ﬂ Vv
only n+m constraints! | ¢ WV)RL pe uv)+t €
Reduced verification t; m+n constraints:,# H(/ F#%?)'ysi(-g) A V(u, -
Efficient algorithm via pessimistic estimators:
- Compute r15’?'-(\/ fal) : Chernoff bound of Pr[deg, (V) v p-deggs(V)]
Pr(u,v fail) : Chernoff bound of Pr[#(uv) #p-#5(uv)]
S Prv $ail) + 2 Pr(uvial) &< 4
Vv l-l,v'

Derandomization: Unbalanced Cuts
o

First goal: ensure that |9, %, p19S| for all unbal. cuts 9S: |S|£3’
(includes all &-approximate mincuts for a ¢- expander)

Lemma: suffices to ensure that: [+ degy(v) = p-deg(v) £ i(£ A Vv
only n+m constraints! #H (U,V) Xp #G(U V) ii(_ﬁ)) Vin \)eE

Reduced verification to m+n constralnts #mm el edges

Efficient algorlthm via pessimistic estimators:
- Compute Pr(v fail) : Chernoff bound of Prldegy,(v) # p-degg(V)]

Pr(uv fail) : Chernoff bound of Pr[#,(u,v) #p: #a(uyv)]
zpr(v fal) +2 Py o) &< L

- glven edge e, update () as prob. conditional on choosing/skipping e
(only need to update 3 terms)
- choose/skip e depending on which is smaller

Balanced Cuts

H preserves unbalanced cuts,
but not balanced cut!

Balanced Cuts

mincwck in ©° IBHS*l v PA

H preserves unbalanced cuts,
but not balanced cut!

Recall goal: for 9:S* mincut in G, 35" is 1.1-approx mincut in H

Balanced Cuts

¥| v A
\ ek 0 6 [STIRP
NN

not 1.1 approx in H!
H preserves unbalanced cuts,

but not balanced cut!

Recall goal: for 9;S* mincut in G, 35" is 1.1-approx mincut in H

Balanced Cuts

¥| v/ A
- ok in 6 |95 | p
AN

not 1.1 approx in H!
H preserves unbalanced cuts,

but not balanced cut!

Recall goal: for 9:S* mincut in G, 35" is 1.1-approx mincut in H

Solution: force balanced cuts to have weight 2 PA

Balanced Cuts

¥| v/ A
_ ;w-nezla.ﬁ I‘VP
o el

not 1.1 approx in H!
H preserves unbalanced cuts,

but not balanced cut!
H U expander
Recall goal: for 9;S* mincut in G, 35" is 1.1-approx mincut in H

Solution: force balanced cuts to have weight 2 PA
Solution: “overlay” an arbitrary ©(1)-expander,

“lightly weighted” s.t.
- mincut of G increases by < SP;\
- any balanced cut increases by 2 PA

Balanced Cuts

¥| A/ A
- ;w-nezlaHS I‘VP
NN

+_€£pﬂ not 1.1 QpproX In H!
H preserves unbalanced cuts,

but not balanced cut!
H U expander
Recall goal: for 9;S* mincut in G, 3,S" is 1.1-approx mincut in H

Solution: force balanced cuts to have weight 2 PA
Solution: “overlay” an arbitrary ©(1)-expander,

“lightly weighted” s.t.
- mincut of G increases by < 2P;\
- any balanced cut increases by 2 P?\

Balanced Cuts

¥| A/ A
_ ;w-nezlaHS I‘VP
SN 42

+_€£pﬂ not 1.1 approx In H!
H preserves unbalanced cuts,

but not balanced cut!

H U expander
Recall goal: for 9;S* mincut in G, 3,S" is 1.1-approx mincut in H

Solution: force balanced cuts to have weight 2 PA
Solution: “overlay” an arbitrary ©(1)-expander, Nota (1+£)-

i § ; - approximate
lightly weighted” s.t. sut diskraifiee

- mincut of G increases by < SPA but OK for
- any balanced cut increases by 2 PA —

Expander: Recap

Preserve all unbalanced cuts up to (1££) by
preserving degrees and parallel edges

Force balanced cuts to be large by overlaying an
arbitrary expander

020 Expander of Expanders

Expander decomposition of G:
partition Vinto V,,...V s.t.
G[V.] i1s an expander for all i

oo Expander of Expanders

Expander decomposition of G:

partition Vinto V,,...Vy s.t.

G[V.] is an expander for all |
Structure of unbalanced cuts?

How to define unbalanced?

<\ Expander of Expanders

Structure of unbalanced cuts?
How to define unbalanced?

<\ Expander of Expanders

P
DEV: difference

once a|i3ne
Structure of unbalanced cuts?

How to define unbalanced?

of
Def: S is unbalanced if |D| < °’/¢ and (S| < /¢

<\ Expander of Expanders

P
DEV: difference

once a|i3ne
Structure of unbalanced cuts?

How to define unbalanced?

of
Def: S is unbalanced if |D| < °‘/¢ and (S| £ /¢

P
DEV: difference

once a|i3ne
Structure of unbalanced cuts?

How to define unbalanced?

of
Def: S is unbalanced if |D| < °‘/¢ and (S|4 /¢

<\ Expander of Expanders

<ofy <%
terms terms

Structure of unbalanced cuts?
How to define unbalanced?

of
Def: S is unbalanced if |D| < °‘/¢ and (S|4 /¢

<\ Expander of Expanders

<ofy <%
terms terms

P
DEV: difference

once u“aneo‘ for Some VEV/,

Structure of unbalanced cuts?
How to define unbalanced?

o/
Def: S is unbalanced if |D| < °‘/¢ and (S|4 /¢

<\ Expander of Expanders

Nt
=2ﬂ; +Z iﬁu
veS) uebd
- J
<ofy <%
‘_/5(7 : terms terms
uffices to
DEV: difference preserve these! /-ﬂx L(,ﬂ. or

i “"ﬂ“ei O(m+n) total: E(
Structure of unbalanced cuts*” each edge e € E

How to define unbalanced? belongs to <4 of them

o/
Def: S is unbalanced if |D| < °‘/¢ and (S, < /¢

o<\ Expander of Expander

<ofy <%
terms terms

V dor Some Uev
E(}j: {u for Some ut-;VZ
How to define unbald Of exXpa nders -
o/
Def: S is unbalanced if |D| < °’/¢ and (S| < /¢

Recursive Expander Decomposition

T

35,

Expander decomposition of G:

partition Vinto V,,...Vy s.t.
G[V,] is a p-expander for all |

Recursive Expander Decomposition

2 -5

{0 é’ — [
s.('
oS
Expander decomposition of G:
partition Vinto V,,...V s.t.
G[V,] is a p-expander for all |

- # inter-cluster edges is £¢ frackon = £ \Djwm levels
- “boundary-linked” property to upper bound |332|, |953|, [GRST SODA‘21]

jmli
Typewriter
[GRST SODA'21]

Conclusion

Deterministic mincut in m**°!) time by derandomizing
skeleton construction in [Karger '96]

Open questions:
- deterministic (1+ £)-approx cut sparsifier?
- requires understanding structure of balanced cuts
- spectral approach? Derandomize O(m) time [LS'17] ?
- deterministic mincut in m polylog(n) time?
- no deterministic expander decomp. known with
polylog(n) factors

jmli
Typewriter
~

