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Introduction

All graphs are undirected and either unweighted or non-
negatively weighted

t

(Global) mincut: given a graph, find a
minimum cardinality/weight cut whose
removal disconnects the graph

s-t mincut: ...cut whose removal disconnects vertices s and t

Max-flow min-cut theorem: s-t min-cut = s-t max-flow,
can recover s-t min-cut given s-t max-flow
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Global min-cut algorithms

Find s-t max-flow for all pairs s,t: O(nA2) max-flows

Fix any vertex s; find s-t max-flow for all t-max -flows
poljloj(n) ?

Push-relabel max-flow algorithm: O(mn) time [Hao-Orlin '94]

Non max-flow based techniques: O(mn) time
[Nagamochi-lbaraki ‘92, Gabow ‘95, Stoer-Wagner ‘97]
Random contraction: 8(n"2) time [Karger ‘92, Karger-Stein ‘94]

Random sampling + tree packing: 8(m) time [Karger ‘95]

~J
Best deterministic algorithm stiII O(m) 7
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Global min-cut algorithms

Open problem 1: Can we solve (global) min-cut using
polylog(n) s-t max-flows?

Open problem 2: Can we solve min-cut deterministically in
8(m) time?

No progress till 5 years back

[Kawarabayashi and Thorup 2015]: deterministic min-cut on
simple graphs in O(m) time
[Henzinger, Rao, Wang 2017]: improved to O(m Iogzn Ioglogzn)

[This work]: deterministic min-cut for weighted graphs in O(mH'E) time
plus polylog(n) calls to s-t max-flow
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Main insights: local algorithms and expander decomposition

Both popularized by [Spielman and Teng 2004] in their
O(m) time algorithm on solving Laplacian systems

“Modern” approach to algorithm design
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Fix a seed vertex s. If there exists a good
cut “local” to s, then output in sublinear
time (without looking at the whole graph)

Run in time ~ size of smaller side

"PageRank Nibble” [Andersen, Chung, Lang ‘06]:
(approximate) low-conductance cut in time ~ # edges of smaller side

This work: if global min-cut has polylog(n)
vertices on smaller side ("“unbalanced”),
then can find in polylog(n) s-t max-flows

5| < polyTog(n)
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Expander Decomposition

Solve when graph is an expander (easy case)
For general graphs, decompose into expanders,
solve on each expander, and

recurse

[Chuzhoy, Gao, L., Nanongkal, Peng, Saranurak]: can compute an expander
decomposition deterministically in m1+°(1) time

For min-cut: when graph is an expander, the min-cut must be unbalanced!
(polylog(n) vertices on smaller side.) So local algorithm works.



Local algorithm: Isolators

Suppose (S, V\S) is a min-cut.
TS Vis an isolator if |S nTI =1




Local algorithm: Isolators

Suppose (S, V\S) is a min-cut.
TS Vis an isolator if |S nT] =1

T

Given T, can compute (t, T\t)-min-cut forallte T In
Of(log ITl) total max-flow calls




Local algorithm: Isolators

Suppose (S, V\S) is a min-cut. X
TS Vis an isolator if |S nT] =1

Given T, can compute (t, T\t)-min-cut forallte T In
O(log ITl) total max-flow calls



Local algorithm: Isolators

Suppose (S, V\S) is a min-cut. %
TS Vis an isolator if |S nT] =1

Given T, can compute (t, T\t)-min-cut forallte T In
O(log ITl) total max-flow calls “amortized sublinear” overallte T



Local algorithm: Isolators

Suppose (S, V\S) is a min-cut. X
TS Vis an isolator if |S nT] =1

Given T, can compute (t, T\t)-min-cut forallte T In
O(Iog ITl) total max-flow calls “amortized sublinear” overall te T
If T Is an isolator, then one of the cuts returned is the
min-cut!
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Simple Randomized Min-cut

Let (S, V\S) be the min-cut
- Guess ISI ~ 2! for some i
- Sample each vertex with probability 1/2!
- With constant probability, sample exactly one in S
=> sampled set T is an isolator
- Run the isolator algorithm for all i, output smallest
(t, T\t)-min-cut found
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Almost-Isolator
(S, V\S) is the min-cut
T is an almost-isolator if [SNT| < k (k = polylog(n))

Given an almost-isolator, subsampling with
probability 1/k O(log n) times produces an isolator

Derandomization: overhead of k°®!) log n

Unbalanced case: T =V is an almost-isolator if
IS| < polylog(n). Algorithm calls polylog(n) max-flows
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Balanced case: det. sparsification

Suppose IS Tl, |(VAS)nT)|> polylog(n) [initially T=V]
Goal: find T' s.t. IT'l < ITl/2 (sparsification)
ISNT'I>0, |(VAS)NT'[ >0
(still hit both sides)

Algorithm: start with T=V

run unbalanced case, then sparsify T,

repeat until ITl =1

return smallest (t, T\t)-min-cut found
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Conductance and Expanders

| E(S,V\9)
Conductance of an (unweighted) graph: _EE(G): é"é’\} Vol (S)
Vol (S) £ vol(v\S) lﬁ
G iS 3 ¢-expander if i(e) > ¢ sum of degrees in S

Why are ¢-expanders easy? [ ¢ = po,y,'c,g(n,

Claim: in a ¢-expander, then ISI< /¢

Proof: Suppose vol(S) & vol(v\s) |
vol (5) = S deg 2SA=AIS|  [A=min-cut]

VES VES

| E(S, V\s)] A |5 <!
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Deterministic sparsification of T (T=V)

Expander decomposition: partition V into Vyq, ..., Vi s.t.
(1) Each induced graph G[V;] is a qS-expander

(2) At most half of edges go between expanders < /¢ vertices
Insight 1: a min-cut can't cut too

“deeply” into a component , c

Vz ¢
. ) . é/ .- ©
Insight 2: a min-cut can’t cut into w‘%““ = m
too many components - @Q \ @

Select an arbitrary small set of vertices from each expander;
that's our sparsified set T
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Summary & Future Work

1+2

Deterministic min-cut algorithm in m"“ plus

polylog(n) max-flow calls
Main open question: S(m) time?
Other applications of isolators

- Steiner min-cut in polylog(n) max-flows
- More applications?



