Deterministic Min-cut In
Poly-logarithmic Max-flows

Jason LI
Joint work with Debmalya Panigrahi (Duke)

Introduction

All graphs are undirected and either unweighted or non-
negatively weighted

Introduction

All graphs are undirected and either unweighted or non-
negatively weighted

(Global) mincut: given a graph, find a
minimum cardinality/weight cut whose
removal disconnects the graph

Introduction

All graphs are undirected and either unweighted or non-
negatively weighted

(Global) mincut: given a graph, find a
minimum cardinality/weight cut whose
removal disconnects the graph

s-t mincut: ...cut whose removal disconnects vertices s and t

Introduction

All graphs are undirected and either unweighted or non-
negatively weighted

t

(Global) mincut: given a graph, find a
minimum cardinality/weight cut whose
removal disconnects the graph

s-t mincut: ...cut whose removal disconnects vertices s and t

Introduction

All graphs are undirected and either unweighted or non-
negatively weighted

t

(Global) mincut: given a graph, find a
minimum cardinality/weight cut whose
removal disconnects the graph

s-t mincut: ...cut whose removal disconnects vertices s and t

Max-flow min-cut theorem: s-t min-cut = s-t max-flow,
can recover s-t min-cut given s-t max-flow

Global min-cut algorithms

Find s-t max-flow for all pairs s,t: O(nA2) max-flows
Fix any vertex s; find s-t max-flow for all t: O(n) max-flows

Global min-cut algorithms

Find s-t max-flow for all pairs s,t: O(nA2) max-flows
Fix any vertex s; find s-t max-flow for all t: O(n) max-flows

Push-relabel max-flow algorithm: S(mn) time [Hao-Orlin '94]

Global min-cut algorithms

Find s-t max-flow for all pairs s,t: O(nA2) max-flows
Fix any vertex s; find s-t max-flow for all t: O(n) max-flows

Push-relabel max-flow algorithm: 6(mn) time [Hao-Orlin '94]

Non max-flow based techniques: S(mn) time
[Nagamochi-lbaraki ‘92, Gabow ‘95, Stoer-Wagner ‘97]

Global min-cut algorithms

Find s-t max-flow for all pairs s,t: O(nA2) max-flows
Fix any vertex s; find s-t max-flow for all t: O(n) max-flows

Push-relabel max-flow algorithm: 6(mn) time [Hao-Orlin '94]

Non max-flow based techniques: S(mn) time
[INagamochi-Ilbaraki ‘92, Gabow ‘95, Stoer-Wagner ‘97]

Random contraction: 5(n'\2) time [Karger ‘92, Karger-Stein ‘94]

Global min-cut algorithms

Find s-t max-flow for all pairs s,t: O(nA2) max-flows
Fix any vertex s; find s-t max-flow for all t: O(n) max-flows

Push-relabel max-flow algorithm: 6(mn) time [Hao-Orlin '94]

Non max-flow based techniques: S(mn) time
[INagamochi-lbaraki ‘92, Gabow ‘95, Stoer-Wagner ‘97]

Random contraction: 6(n"2) time [Karger ‘92, Karger-Stein ‘94]

Random sampling + tree packing: 8(m) time [Karger ‘95]

Global min-cut algorithms

Find s-t max-flow for all pairs s,t: O(nA2) max-flows
Fix any vertex s; find s-t max-flow for all t: O(n) max-flows

Push-relabel max-flow algorithm: 6(mn) time [Hao-Orlin '94]

Non max-flow based techniques: S(mn) time
[INagamochi-lbaraki ‘92, Gabow ‘95, Stoer-Wagner ‘97]

Random contraction: 6(n"2) time [Karger ‘92, Karger-Stein ‘94]
Random sampling + tree packing: 8(m) time [Karger ‘95]

Best deterministic algorithm still O(mn)

Global min-cut algorithms

Find s-t max-flow for all pairs s,t: O(nA2) max-flows

Fix any vertex s; find s-t max-flow for all t-max -flows
poljloj(n) ?

Push-relabel max-flow algorithm: O(mn) time [Hao-Orlin '94]

Non max-flow based techniques: O(mn) time
[Nagamochi-lbaraki ‘92, Gabow ‘95, Stoer-Wagner ‘97]
Random contraction: 8(n"2) time [Karger ‘92, Karger-Stein ‘94]

Random sampling + tree packing: 8(m) time [Karger ‘95]

~J
Best deterministic algorithm stiII O(m) 7

Global min-cut algorithms

Open problem 1: Can we solve (global) min-cut using
polylog(n) s-t max-flows?

Open problem 2: Can we solve min-cut deterministically in
O(m) time?

Global min-cut algorithms

Open problem 1: Can we solve (global) min-cut using
polylog(n) s-t max-flows?

Open problem 2: Can we solve min-cut deterministically in
8(m) time?

No progress till 5 years back

[Kawarabayashi and Thorup 2015]: deterministic min-cut on
simple graphs in O(m) time
[Henzinger, Rao, Wang 2017]: improved to O(m Iogzn Ioglogzn)

Global min-cut algorithms

Open problem 1: Can we solve (global) min-cut using
polylog(n) s-t max-flows?

Open problem 2: Can we solve min-cut deterministically in
8(m) time?

No progress till 5 years back

[Kawarabayashi and Thorup 2015]: deterministic min-cut on
simple graphs in O(m) time
[Henzinger, Rao, Wang 2017]: improved to O(m Iogzn Ioglogzn)

[This work]: deterministic min-cut for weighted graphs in O(mH'E) time
plus polylog(n) calls to s-t max-flow

Our Approach

Main insights: local algorithms and expander decomposition

Our Approach

Main insights: local algorithms and expander decomposition

Both popularized by [Spielman and Teng 2004] in their
O(m) time algorithm on solving Laplacian systems

Our Approach
Main insights: local algorithms and expander decomposition

Both popularized by [Spielman and Teng 2004] in their
O(m) time algorithm on solving Laplacian systems

“Modern” approach to algorithm design

Local Graph Cut Algorithms

Fix a seed vertex s. If there exists a good
cut “local” to s, then output in sublinear
time (without looking at the whole graph)

Run in time ~ size of smaller side

Local Graph Cut Algorithms

Fix a seed vertex s. If there exists a good
cut “local” to s, then output in sublinear
time (without looking at the whole graph)

Run in time ~ size of smaller side

"PageRank Nibble” [Andersen, Chung, Lang ‘06]:
(approximate) low-conductance cut in time ~ # edges of smaller side

Local Graph Cut Algorithms

Fix a seed vertex s. If there exists a good
cut “local” to s, then output in sublinear
time (without looking at the whole graph)

Run in time ~ size of smaller side

"PageRank Nibble” [Andersen, Chung, Lang ‘06]:
(approximate) low-conductance cut in time ~ # edges of smaller side

This work: if global min-cut has polylog(n)
vertices on smaller side ("“unbalanced”),
then can find in polylog(n) s-t max-flows

5| < polyTog(n)

Expander Decomposition

Solve when graph is an expander (easy case)

For general graphs, decompose into expanders,
solve on each expander, and
recurse

Expander Decomposition

Solve when graph is an expander (easy case)
For general graphs, decompose into expanders,
solve on each expander, and

recurse

[Chuzhoy, Gao, L., Nanongkal, Peng, Saranurak]: can compute an expander
decomposition deterministically in m1+°(1) time

Expander Decomposition

Solve when graph is an expander (easy case)
For general graphs, decompose into expanders,
solve on each expander, and

recurse

[Chuzhoy, Gao, L., Nanongkal, Peng, Saranurak]: can compute an expander
decomposition deterministically in m1+°(1) time

For min-cut: when graph is an expander, the min-cut must be unbalanced!
(polylog(n) vertices on smaller side.) So local algorithm works.

Local algorithm: Isolators

Suppose (S, V\S) is a min-cut.
TS Vis an isolator if |S nTI =1

Local algorithm: Isolators

Suppose (S, V\S) is a min-cut.
TS Vis an isolator if |S nT] =1

T

Given T, can compute (t, T\t)-min-cut forallte T In
Of(log ITl) total max-flow calls

Local algorithm: Isolators

Suppose (S, V\S) is a min-cut. X
TS Vis an isolator if |S nT] =1

Given T, can compute (t, T\t)-min-cut forallte T In
O(log ITl) total max-flow calls

Local algorithm: Isolators

Suppose (S, V\S) is a min-cut. %
TS Vis an isolator if |S nT] =1

Given T, can compute (t, T\t)-min-cut forallte T In
O(log ITl) total max-flow calls “amortized sublinear” overallte T

Local algorithm: Isolators

Suppose (S, V\S) is a min-cut. X
TS Vis an isolator if |S nT] =1

Given T, can compute (t, T\t)-min-cut forallte T In
O(Iog ITl) total max-flow calls “amortized sublinear” overall te T
If T Is an isolator, then one of the cuts returned is the
min-cut!

Local algorithm: Isolators

- Compute log ITl bipartitions of T, (X, Y))
- Want: each pair s,t In T is separated in at least one of them
- Encode vertices in T using log,ITl bits; for each bit position k,
Xy = vertices with kth bit 0, Yk = vertices with kth bit 1

Local algorithm: Isolators

- Compute log ITl bipartitions of T, (X, Y}
- Want: each pair s,t In T is separated in at least one of them
- Encode vertices in T using log,ITl bits; for each bit position k,
Xy = vertices with kth bit 0, Yk = vertices with kth bit 1

X Y

Local algorithm: Isolators

- Compute log ITl bipartitions of T, (X, Y}
- Want: each pair s,t In T is separated in at least one of them
- Encode vertices in T using log,ITl bits; for each bit position k,
Xy = vertices with kth bit 0, Yk = vertices with kth bit 1

X2

Local algorithm: Isolators

- Compute log ITl bipartitions of T, (X, Y}
- Want: each pair s,t In T is separated in at least one of them
- Encode vertices in T using log,ITl bits; for each bit position k,
Xy = vertices with kth bit 0, Yk = vertices with kth bit 1

- For each k, compute (Xk, Yk)-min-cut i
’ Py ”“i |
0/ 1Py

. &
L

' 4
i 3
l.:...l'.
%ﬂ
..l.ll:
i
.
4
| d
-
4

X

1
\"\ .

Local algorithm: Isolators

- Compute log ITl bipartitions of T, (X, Y}
- Want: each pair s,t In T is separated In at least one of them
- Encode vertices in T using log,ITl bits; for each bit position k,
Xy = vertices with kth bit 0, Yk = vertices with kth bit 1
- For each k, compute (Xk, Yk)-min-cut

Local algorithm: Isolators

- Compute log ITl bipartitions of T, (X, Y}
- Want: each pair s,t In T is separated in at least one of them
- Encode vertices in T using log,ITl bits; for each bit position k,
Xy = vertices with kth bit 0, Yk = vertices with kth bit 1
- For each k, compute (Xk, Yk)-min-cut
- Union of min-cuts separates all of T

Local algorithm: Isolators

- Compute log ITl bipartitions of T, (X, Y}
- Want: each pair s,t In T is separated in at least one of them
- Encode vertices in T using log,ITl bits; for each bit position k,
Xy = vertices with kth bit 0, Yk = vertices with kth bit 1
- For each k, compute (Xk, Yk)-min-cut
- Union of min-cuts separates all of T

Local algorithm: Isolators

- Compute log ITl bipartitions of T, (X, Y}
- Want: each pair s,t In T is separated in at least one of them
- Encode vertices in T using log,ITl bits; for each bit position k,
Xy = vertices with kth bit 0, Yk = vertices with kth bit 1
- For each k, compute (Xk, Yk)-min-cut
- Union of min-cuts separates all of T
Claim: (t, T\t)-min-cut “contained” In
t's piece (“uncrossing” argument)

<
W,

L3

at

1%

L]

—

Local algorithm: Isolators

- Compute log ITl bipartitions of T, (X, Y}
- Want: each pair s,t In T is separated in at least one of them
- Encode vertices in T using log,ITl bits; for each bit position k,
Xy = vertices with kth bit 0, Yk = vertices with kth bit 1
- For each k, compute (Xk, Yk)-min-cut
- Union of min-cuts separates all of T
Claim: (t, T\t)-min-cut “contained” In
t's piece (“uncrossing” argument)

Local algorithm: Isolators

- Compute log ITl bipartitions of T, (X, Y}
- Want: each pair s,t In T is separated in at least one of them
- Encode vertices in T using log,ITl bits; for each bit position k,
Xy = vertices with kth bit 0, Yk = vertices with kth bit 1
- For each k, compute (Xk, Yk)-min-cut
- Union of min-cuts separates all of T
Claim: (t, T\t)-min-cut “contained” In
t's piece (“uncrossing” argument)
- Contract outside of t's piece, run max-flow;
total O(m) edges over all t

&7
V'

/
<

Local algorithm: Isolators

- Compute log ITl bipartitions of T, (X, Y}
- Want: each pair s,t In T is separated in at least one of them
- Encode vertices in T using log,ITl bits; for each bit position k,

Xy = vertices with kth bit 0, Yk = vertices with kth bit 1

- For each k, compute (Xk, Yk)-min-cut

- Union of min-cuts separates all of T

Claim: (t, T\t)-min-cut “contained” In

t's piece (“uncrossing” argument)

- Contract outside of t's piece, run max-flow;

total O(m) edges over all t

Local algorithm: Isolators

- Compute log ITl bipartitions of T, (X, Y}
- Want: each pair s,t In T is separated in at least one of them
- Encode vertices in T using log,ITl bits; for each bit position k,

Xy = vertices with kth bit 0, Yk = vertices with kth bit 1

- For each k, compute (Xk, Yk)-min-cut

- Union of min-cuts separates all of T

Claim: (t, T\t)-min-cut “contained” In

t's piece ("uncrossing” argument)

- Contract outside of t's piece, run max-flow;

total O(m) edges over all t

Simple Randomized Min-cut

Let (S, V\S) be the min-cut
- Guess ISI| ~ 2! for some |

Simple Randomized Min-cut

Let (S, V\S) be the min-cut
- Guess ISI ~ 2! for some i
- Sample each vertex with probability 1/2!
- With constant probability, sample exactly one in S
=> sampled set T is an isolator

Simple Randomized Min-cut

Let (S, V\S) be the min-cut
- Guess ISI ~ 2! for some i
- Sample each vertex with probability 1/2!
- With constant probability, sample exactly one in S
=> sampled set T is an isolator
- Run the isolator algorithm for all i, output smallest
(t, T\t)-min-cut found

Almost-Isolator

(S, V\S) is the min-cut
T is an almost-isolator if |SNT| < k (k = polylog(n))

Almost-Isolator

(S, V\S) is the min-cut
T is an almost-isolator if |SNT| < k (k = polylog(n))

Given an almost-isolator, subsampling with
probability 1/k O(log n) times produces an isolator

Almost-Isolator

(S, V\S) is the min-cut
T is an almost-isolator if |SNT| < k (k = polylog(n))

Given an almost-isolator, subsampling with
probability 1/k O(log n) times produces an isolator

Derandomization: overhead of k°®!) log n

Almost-Isolator
(S, V\S) is the min-cut
T is an almost-isolator if [SNT| < k (k = polylog(n))

Given an almost-isolator, subsampling with
probability 1/k O(log n) times produces an isolator

Derandomization: overhead of k°®!) log n

Unbalanced case: T =V is an almost-isolator if
IS| < polylog(n). Algorithm calls polylog(n) max-flows

Balanced case: det. sparsification
Suppose IS Tl, |(VAS)nT)|> polylog(n) [initially T=V]

Balanced case: det. sparsification

Suppose IS Tl, |(VAS)nT)|> polylog(n) [initially T=V]
Goal: find T' s.t. IT'l < ITl/2 (sparsification)
ISNT'I>0, |(VAS)NT'[>0
(still hit both sides)

Balanced case: det. sparsification

Suppose IS Tl, |(VAS)nT)|> polylog(n) [initially T=V]
Goal: find T' s.t. IT'l < ITl/2 (sparsification)
ISNT'I>0, |(VAS)NT'[>0
(still hit both sides)

Algorithm: start with T=V

run unbalanced case, then sparsify T,

repeat until ITl =1

return smallest (t, T\t)-min-cut found

Conductance and Expanders

| E(S,V\9)

Conductance of an (unweighted) graph: —EE(G): g'c'% vol(S)

Vol (S) £ vol(v\S) /\\
Gis a ¢-expander if i(e) > ¢ sum of degrees in S

Conductance and Expanders

| E(S,V\9)
Conductance of an (unweighted) graph: _EE(G): é"é% Vol (S)
vol()£wol(vs) A\
G iS 3 ¢-expander if i(e) >¢ sum of degrees in S

Why are ¢-expanders easy? [¢ = e

Claim: in a ¢-expander, then ISI< | /g

Conductance and Expanders

| E(S,V\9)
Conductance of an (unweighted) graph: _EE(G): é"é’\} Vol (S)
Vol (S) £ vol(v\S) lﬁ
G iS 3 ¢-expander if i(e) > ¢ sum of degrees in S

Why are ¢-expanders easy? [¢ = po,y,'c,g(n,

Claim: in a ¢-expander, then ISI< /¢

Proof: Suppose vol(S) & vol(v\s) |
vol (5) = S deg 2SA=AIS| [A=min-cut]

VES VES

| E(S, V\s)] A |5 <!

Deterministic sparsification of T (T=V)

Expander decomposition: partition Vinto Vyq, ..., Vi s.t.
(1) Each induced graph G[Vi] is a (t)—expander

(2) At most half of edges go between expanders

(K
V3
G@'

Deterministic sparsification of T (T=V)

Expander decomposition: partition Vinto Vyq, ..., Vi s.t.
(1) Each induced graph G[V;] is a qS-expander |
(2) At most half of edges go between expanders < /¢ vertices

Insight 1: a min-cut can’t cut too
“deeply” into a component

Deterministic sparsification of T (T=V)

Expander decomposition: partition V into Vyq, ..., Vi s.t.
(1) Each induced graph G[V;] is a qS-expander

(2) At most half of edges go between expanders < '/é verTices

Insight 1: a min-cut can’t cut too
“deeply” into a component y
Insight 2: a min-cut can‘t cutinto ow¢°

too many components

Deterministic sparsification of T (T=V)

Expander decomposition: partition Vinto Vy, ..., Vi s.t.
(1) Each induced graph G[V;] is a qS-expander

(2) At most half of edges go between expanders < '/é verTices

Insight 1: a min-cut can’t cut too
“deeply” into a component)
Insight 2: a min-cut can‘tcutinto ow¢°

too many components

Select an arbitrary small set of vertices from each expander;
that's our sparsified set T

Deterministic sparsification of T (T=V)

Expander decomposition: partition V into Vyq, ..., Vi s.t.
(1) Each induced graph G[V;] is a qS-expander |
(2) At most half of edges go between expanders < /¢ vertices

N

Insight 1: a min-cut can’t cut too
“deeply” into a component ,
® ° J s é/¢m‘\‘s ﬁ o ©
Insight 2: a min-cut can‘t cutinto ow¢°

X
(|
too many components

Select an arbitrary small set of vertices from each expander;
that's our sparsified set T

Deterministic sparsification of T (T=V)

Expander decomposition: partition V into Vyq, ..., Vi s.t.
(1) Each induced graph G[V;] is a qS-expander

(2) At most half of edges go between expanders < /¢ vertices
Insight 1: a min-cut can't cut too

“deeply” into a component , c

Vz ¢
.) . é/ .- ©
Insight 2: a min-cut can’t cut into w‘%““ = m
too many components - @Q \ @

Select an arbitrary small set of vertices from each expander;
that's our sparsified set T

Summary & Future Work

1+2

Deterministic min-cut algorithm in m"* plus

polylog(n) max-flow calls

Summary & Future Work

1+2

Deterministic min-cut algorithm in m"“ plus

polylog(n) max-flow calls

Main open question: S(m) time?

Summary & Future Work

1+2

Deterministic min-cut algorithm in m"“ plus

polylog(n) max-flow calls
Main open question: S(m) time?
Other applications of isolators

- Steiner min-cut in polylog(n) max-flows
- More applications?

