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- [Karger'96] randomized algorithm in O(mlog3n) time
“Is there a deterministic near-linear time algorithm?”
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- Best bound remained 6(mn) for 20 years until
- [Kawarabayashi-Thorup’15] O(m) for simple graphs

unweighted graphs without parallel edges

- [Li-Panigrahi’20] max-flow time for weighted graphs

- [Li"21] m**°) time independent of max-flow
"almost-linear time”

- [This work] O(m) time, answering Karger's question
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- Local win/win approach to global mincut

- Our main structural theorem

- New randomized (1+¢&)-approximate global mincut
(main conceptual contribution)

- Derandomize and obtain exact mincut
(technical: 40+ pages)
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(1+€)-approximate mincut

AIgc’“thmtmmbalanced <= poly(logn,1/¢) vertices run local algorithm

- If mincut istrvat (sthgle-vertex on one side): fird-min-degree-

- otherwise, cluster and contract to preserve global mincut
up to (1+¢) factor
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“Local Karger contraction” [Nalam-Saranurak’23]:

mk?polylog(n) randomized time if k vertices on one side
k=poly(logn,1/¢g)=polylog(n)

Overall: mpolylog(n) randomized for (1+0(1))-approx mincut
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- Naive algorithm is polynomial time: there are <=n? many
1.01-approximate mincuts
- Need near-linear time and deterministic
- Replace expander decomposition with s-strong decomp.
|Kawarabayashi-Thorup’l5] [Henzinger-Rao-Wang'17]
- If cluster is small (<= polylog vertices), can use poly-time
algorithm (“Small Cluster Decomposition”)

- i 2
If cluster is large” iliiad

single cluster

call small cluster

4 " “Large Cluster Decomposition”
ecomposmon
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From Approximate to Exact Mincut

- Only randomized component in Karger’'s algorithm is
building the skeleton graph (mincut sparsifier)
- [Karger] Edge sampling gives skeleton graph w.h.p.
- [Li'21]: deterministic skeleton graph in mi+el) time
- Iterative clustering by expander decomposition
- Derandomize edge sampling by pessimistic estimator
- [This work]: replace expander decomposition by
Structure Theorem
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Conclusion

- Structure Theorem: new local approach to global mincut
- Generalization of Kawarabayashi-Thorup sparsification
to weighted graphs
- Only (1+¢&)-approx. algorithm that doesn’t use
max-flow or Karger’s tree packing (global)
- Should be useful for global mincut in other settings
(dynamic/streaming/distributed)



