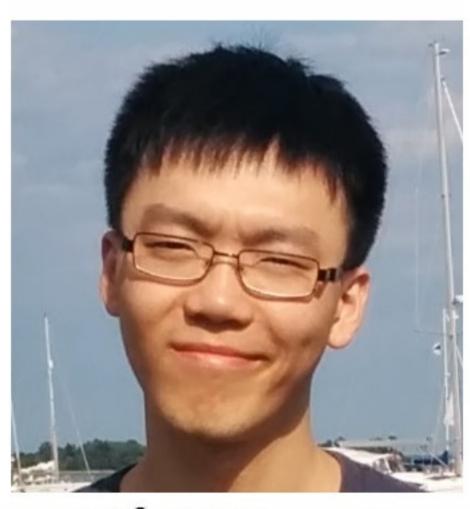
Deterministic Near-Linear Time Minimum Cut for Weighted Graphs

Jason Li (Berkeley→CMU)

with Monika Henzinger

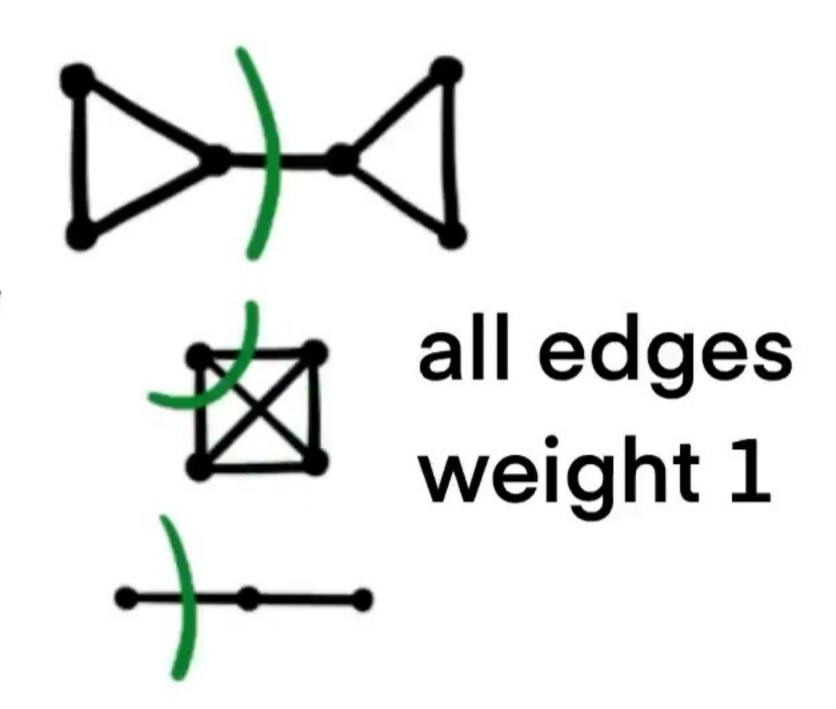
Satish Rao



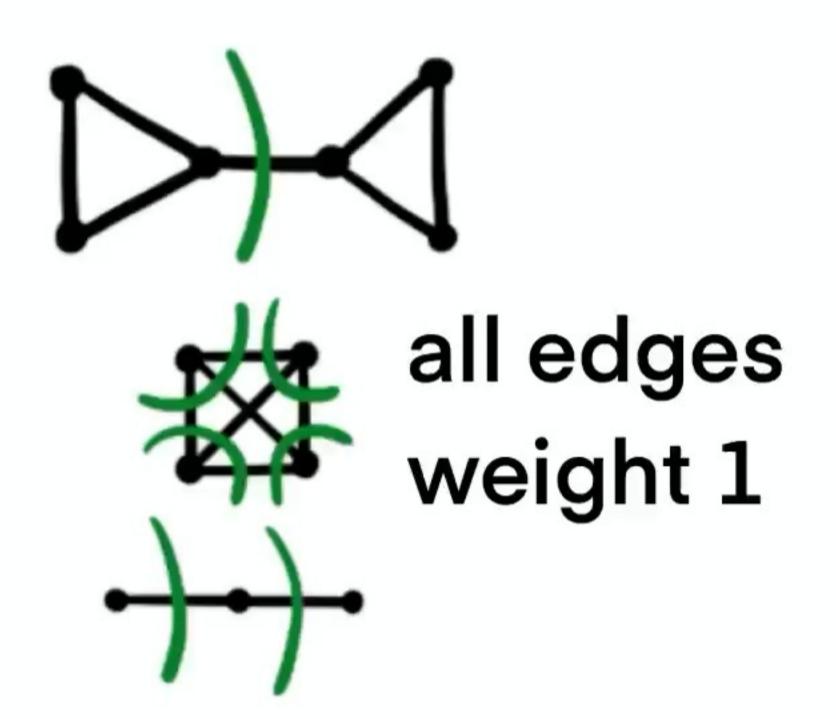
Di Wang

Global mincut problem:
 given a weighted undirected graph,
 delete edges of minimum weight
 to disconnect the graph

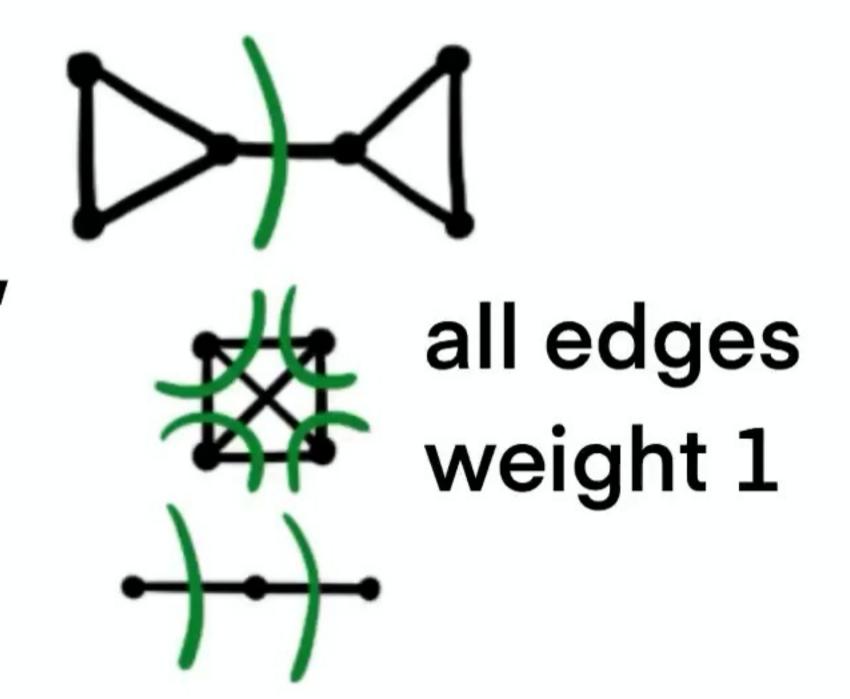
Global mincut problem:
 given a weighted undirected graph,
 delete edges of minimum weight
 to disconnect the graph



Global mincut problem:
 given a weighted undirected graph,
 delete edges of minimum weight
 to disconnect the graph



Global mincut problem:
 given a weighted undirected graph,
 delete edges of minimum weight
 to disconnect the graph



- [Karger'96] randomized algorithm in O(mlog³n) time "Is there a deterministic near-linear time algorithm?"

- Best bound remained Õ(mn) for 20 years until

- Best bound remained O(mn) for 20 years until
- [Kawarabayashi-Thorup'15] O(m) for simple graphs

unweighted graphs without parallel edges

- Best bound remained O(mn) for 20 years until
- [Kawarabayashi-Thorup'15] Õ(m) for simple graphs

unweighted graphs without parallel edges

- [Li-Panigrahi'20] max-flow time for weighted graphs

- Best bound remained O(mn) for 20 years until
- [Kawarabayashi-Thorup'15] Õ(m) for simple graphs

unweighted graphs without parallel edges

- [Li-Panigrahi'20] max-flow time for weighted graphs
- [Li'21] m^{1+o(1)} time independent of max-flow

"almost-linear time"

- Best bound remained O(mn) for 20 years until
- [Kawarabayashi-Thorup'15] Õ(m) for simple graphs

unweighted graphs without parallel edges

- [Li-Panigrahi'20] max-flow time for weighted graphs
- [Li'21] m^{1+o(1)} time independent of max-flow "almost-linear time"
- [This work] O(m) time, answering Karger's question

- Local win/win approach to global mincut

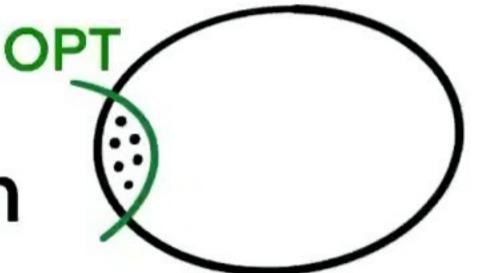
- Local win/win approach to global mincut
- Our main structural theorem

- Local win/win approach to global mincut
- Our main structural theorem
- New randomized (1+ε)-approximate global mincut (main conceptual contribution)

- Local win/win approach to global mincut
- Our main structural theorem
- New randomized (1+ε)-approximate global mincut (main conceptual contribution)
- Derandomize and obtain exact mincut (technical: 40+ pages)

win/win approach:

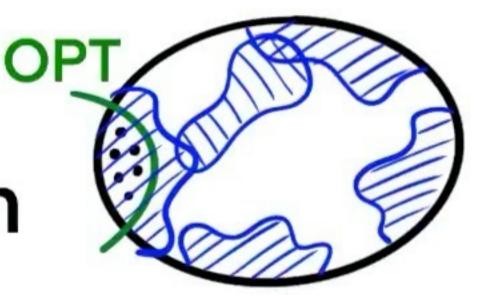
win/win approach:



win/win approach:



win/win approach:



win/win approach:

win/win approach:

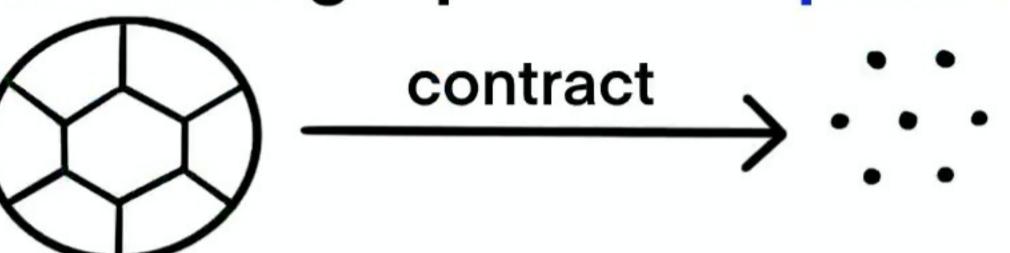
- if solution is local, then run local algorithm
- otherwise, reduce graph while preserving mincut

start at each vertex: n x (local time)

win/win approach:

- if solution is local, then run local algorithm

- otherwise, reduce graph while preserving mincut



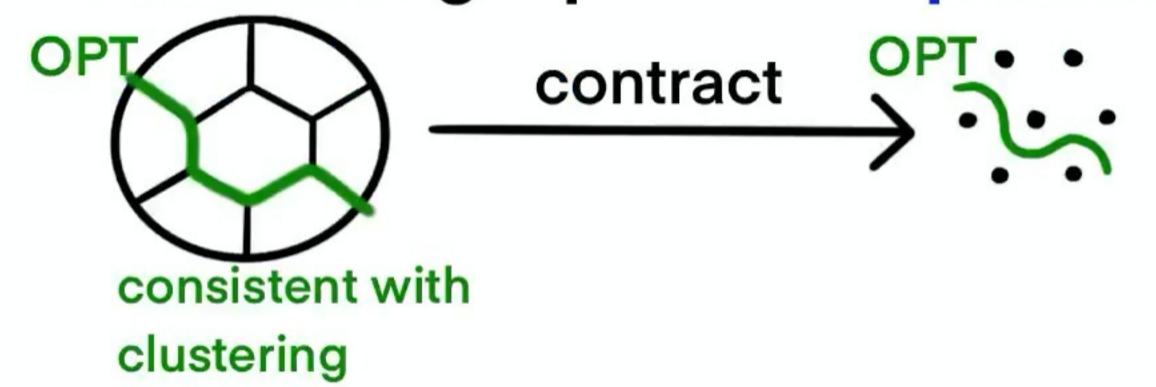
start at each vertex:

n x (local time)

win/win approach:

- if solution is local, then run local algorithm

- otherwise, reduce graph while preserving mincut



start at each
vertex:

n x (local time)

start at each

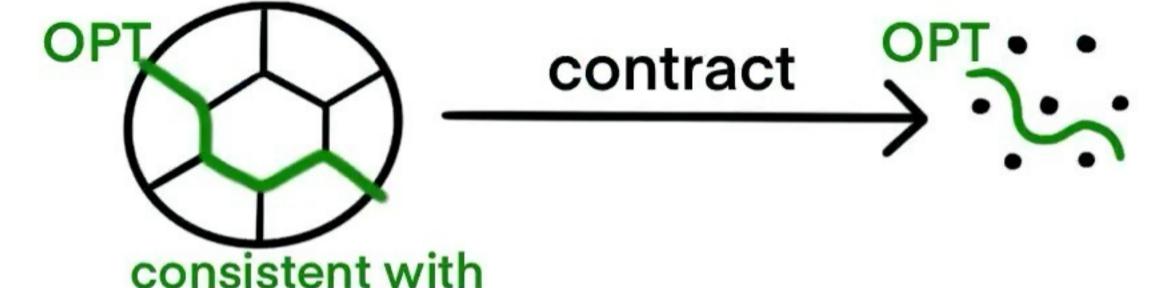
n x (local time)

vertex:

win/win approach:

clustering

- if solution is local, then run local algorithm
- otherwise, reduce graph while preserving mincut



example:

Kawarabayashi-Thorup sparsification for global mincut on simple graphs [KT'15]:

start at each

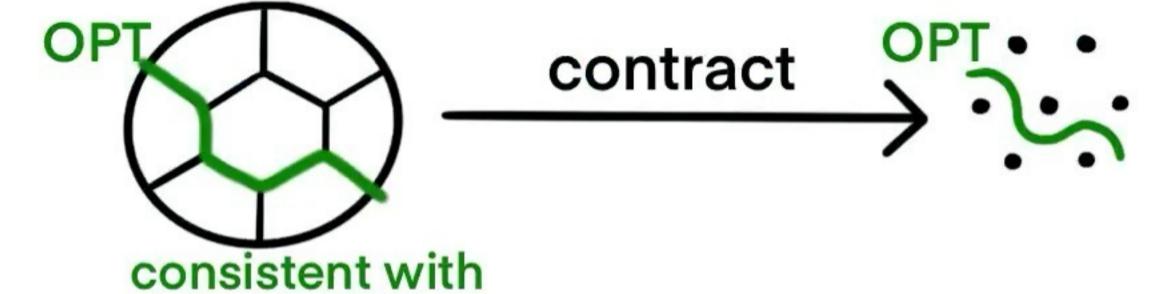
n x (local time)

vertex:

win/win approach:

clustering

- if solution is local, then run local algorithm
- otherwise, reduce graph while preserving mincut



example:

Kawarabayashi-Thorup sparsification for global mincut on simple graphs [KT'15]:

- if mincut is trivial (single vertex on one side): find min degree

start at each

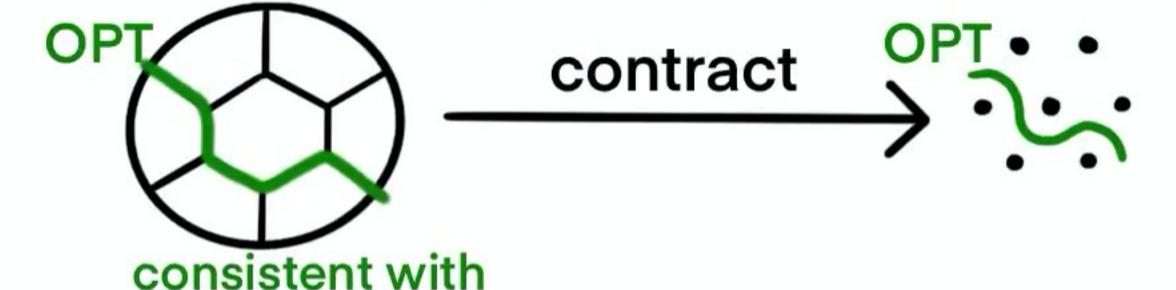
n x (local time)

vertex:

win/win approach:

clustering

- if solution is local, then run local algorithm
- otherwise, reduce graph while preserving mincut



example:

Kawarabayashi-Thorup sparsification for global mincut on simple graphs [KT'15]:

- if mincut is trivial (single vertex on one side): find min degree
- otherwise, cluster and contract to preserve global mincut

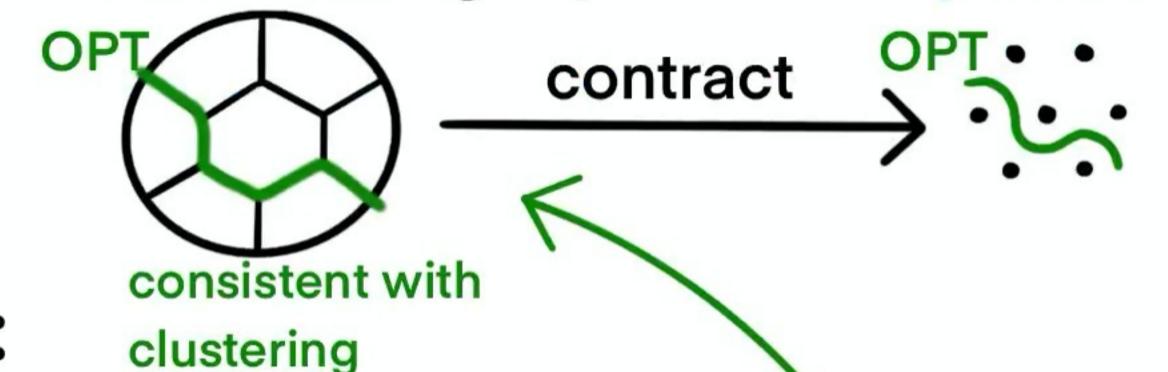
start at each

n x (local time)

vertex:

win/win approach:

- if solution is local, then run local algorithm
- otherwise, reduce graph while preserving mincut



example:

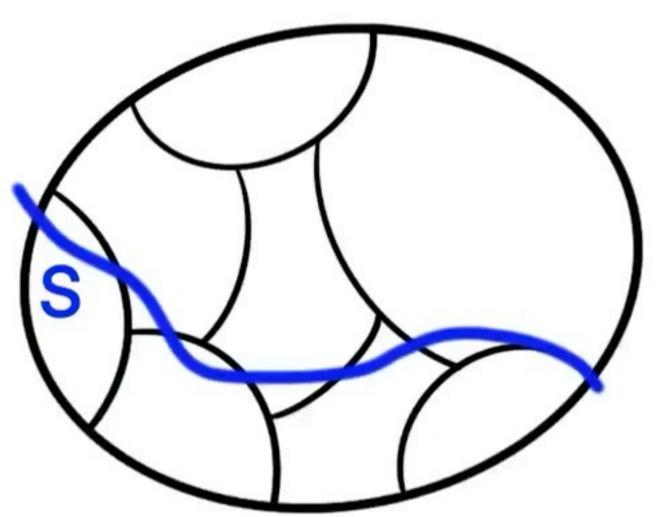
Kawarabayashi-Thorup sparsification for global mincut on simple graphs [KT'15]:

- if mincut is trivial (single vertex on one side): find min degree
- otherwise, cluster and contract to preserve global mincut

Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approximate mincut side S,

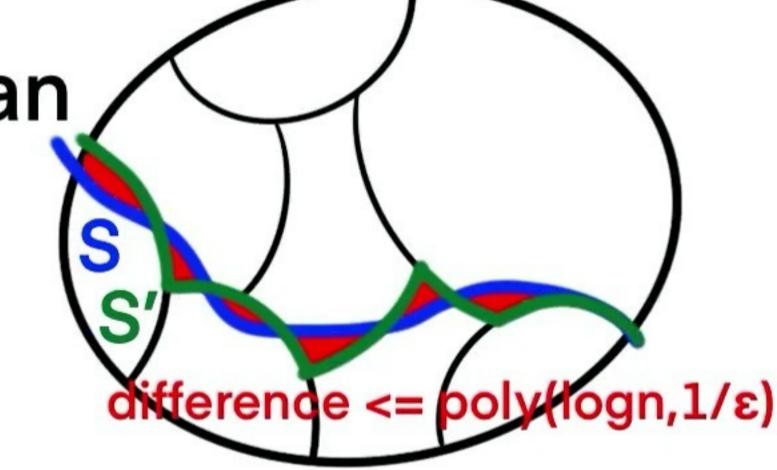


Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approximate mincut side S, can add/remove poly(logn,1/ε) vertices → S'

Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

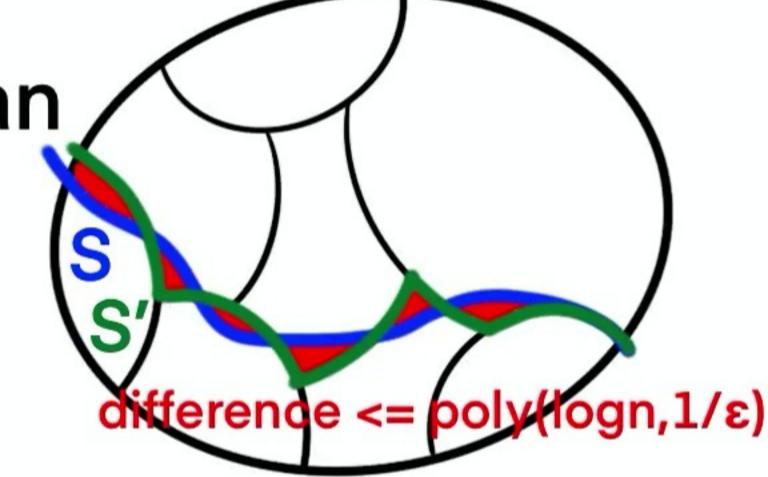
for any 1.01-approximate mincut side S, can add/remove poly(logn,1/ε) vertices → S'
 s.t. (1) cost(S') <= (1+ε) cost(S), and



Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approximate mincut side S, can add/remove poly(logn,1/ ϵ) vertices \rightarrow S'

s.t. (1) $cost(S') \le (1+\epsilon) cost(S)$, and (2) S' is consistent with clustering



Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approximate mincut side S, can add/remove poly(logn,1/ε) vertices → S'

s.t. (1) $cost(S') \le (1+\epsilon) cost(S)$, and

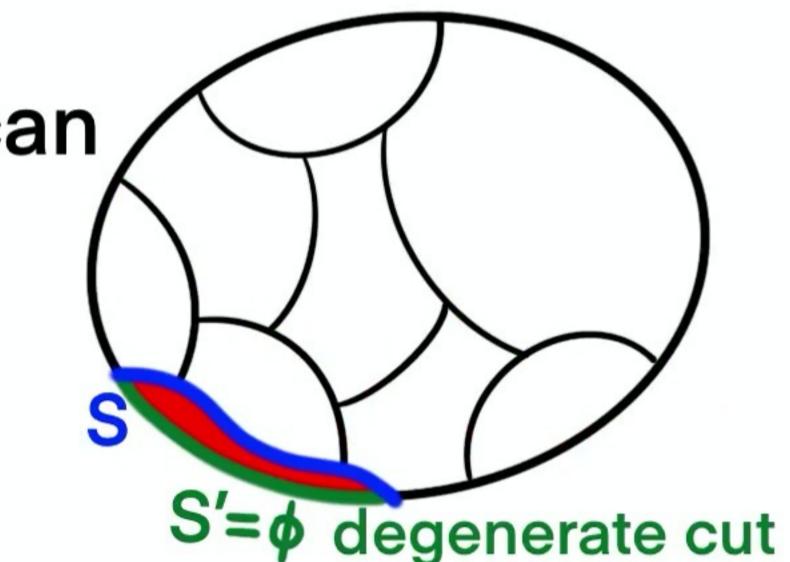
(2) S' is consistent with clustering

Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approximate mincut side S, can add/remove poly(logn,1/ ϵ) vertices \rightarrow S'

s.t. (1) $cost(S') \ll (1+\epsilon) cost(S)$, and

(2) S' is consistent with clustering



Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approximate mincut side S, can

add/remove poly(logn,1/ ϵ) vertices \rightarrow S'

s.t. (1) $cost(S') \ll (1+\epsilon) cost(S)$, and

(2) S' is consistent with clustering

If S' is degenerate, then S must be unbalanced

Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approximate mincut side S, can

add/remove poly(logn,1/ ϵ) vertices \rightarrow S'

s.t. (1) $cost(S') \ll (1+\epsilon) cost(S)$, and

(2) S' is consistent with clustering

If S' is degenerate, then S must be unbalanced

Example 1: path graph



Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approximate mincut side S, can

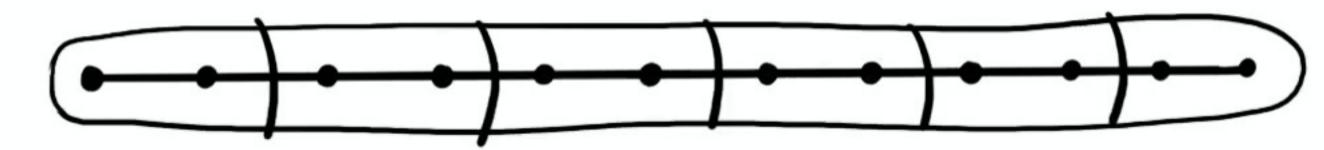
add/remove poly(logn,1/ ϵ) vertices \rightarrow S'

s.t. (1) $cost(S') \ll (1+\epsilon) cost(S)$, and

(2) S' is consistent with clustering

If S' is degenerate, then S must be unbalanced

Example 1: path graph



Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approximate mincut side S, can

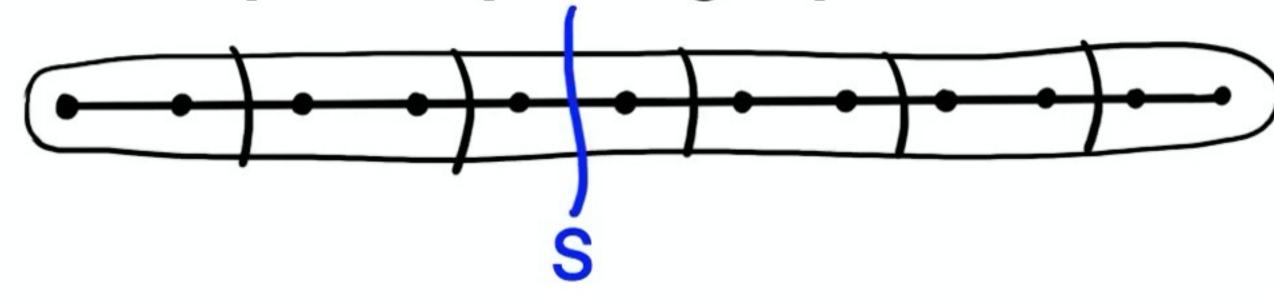
add/remove poly(logn,1/ ϵ) vertices \rightarrow S'

s.t. (1) $cost(S') \le (1+\epsilon) cost(S)$, and

(2) S' is consistent with clustering

If S' is degenerate, then S must be unbalanced

Example 1: path graph



Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

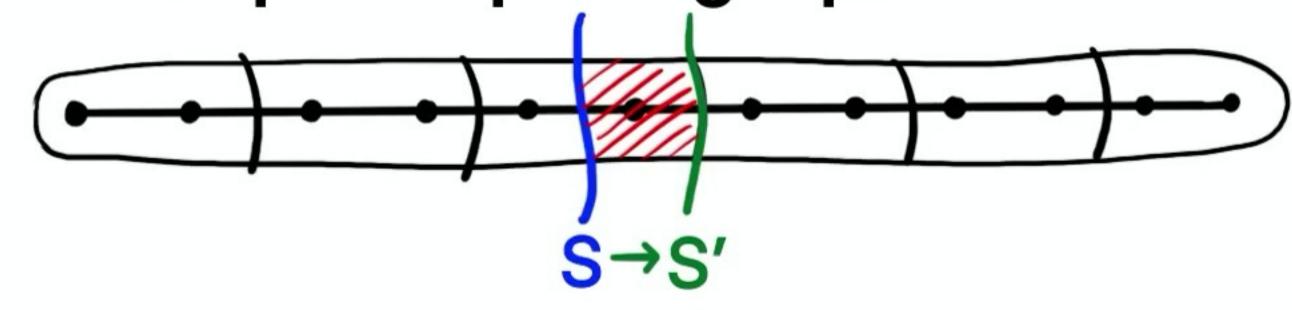
- for any 1.01-approximate mincut side S, can add/remove poly(logn,1/ ϵ) vertices \rightarrow S'

s.t. (1) $cost(S') \ll (1+\epsilon) cost(S)$, and

(2) S' is consistent with clustering

If S' is degenerate, then S must be unbalanced

Example 1: path graph



Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approximate mincut side S, can

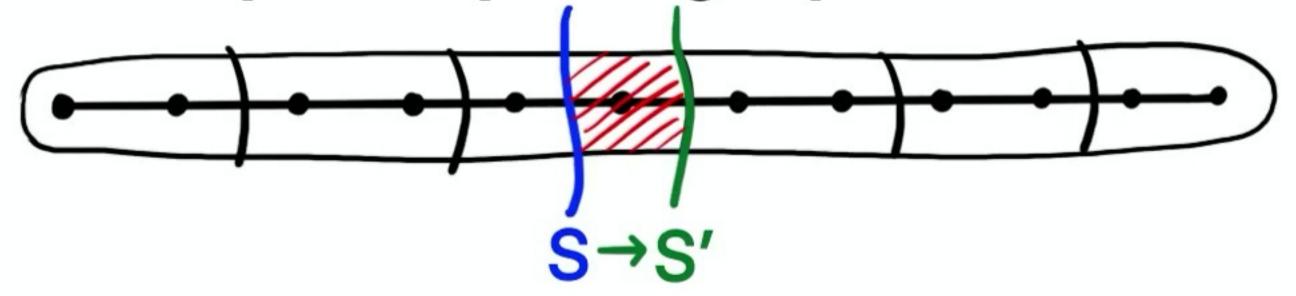
add/remove poly(logn,1/ ϵ) vertices \rightarrow S'

s.t. (1) $cost(S') \ll (1+\epsilon) cost(S)$, and

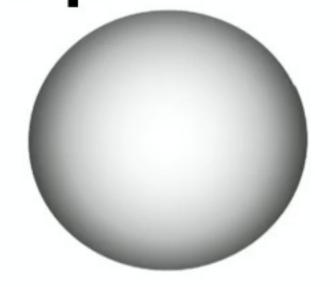
(2) S' is consistent with clustering

If S' is degenerate, then S must be unbalanced

Example 1: path graph



Example 2: clique



Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approximate mincut side S, can

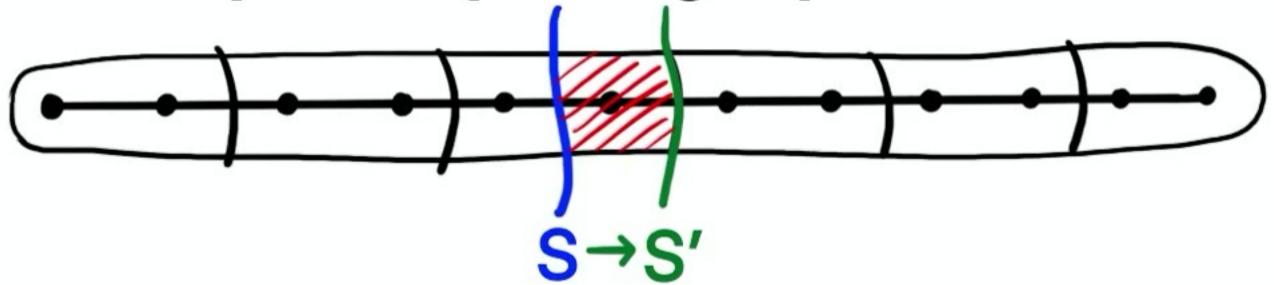
add/remove poly(logn,1/ ϵ) vertices \rightarrow S'

s.t. (1) $cost(S') \ll (1+\epsilon) cost(S)$, and

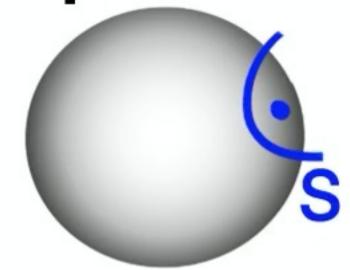
(2) S' is consistent with clustering

If S' is degenerate, then S must be unbalanced

Example 1: path graph



Example 2: clique



Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approximate mincut side S, can

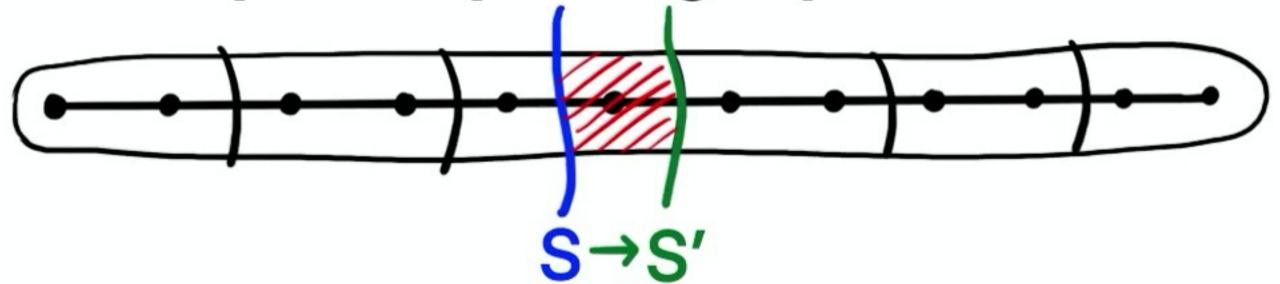
add/remove poly(logn,1/ ϵ) vertices \rightarrow S'

s.t. (1) $cost(S') \ll (1+\epsilon) cost(S)$, and

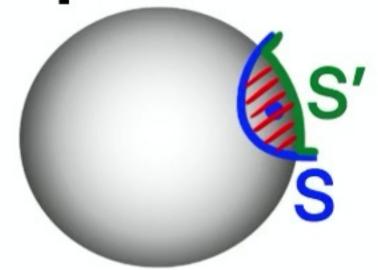
(2) S' is consistent with clustering

If S' is degenerate, then S must be unbalanced

Example 1: path graph



Example 2: clique



Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approximate mincut side S, can

add/remove poly(logn,1/ ϵ) vertices \rightarrow S'

s.t. (1) $cost(S') \ll (1+\epsilon) cost(S)$, and

(2) S' is consistent with clustering

If S' is degenerate, then S must be unbalanced

degenerate cut

local algorithm [Kawarabayashi-Thorup]:

- if mincut is trivial (single vertex on one side): find min degree
- otherwise, cluster and contract to preserve global mincut

Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approximate mincut side S, can add/remove poly(logn,1/ε) vertices → S'
 - s.t. (1) $cost(S') \ll (1+\epsilon) cost(S)$, and
 - (2) S' is consistent with clustering

If S' is degenerate, then S must be unbalanced

degenerate cut

Algorithm_{unbalanced} <= poly(logn,1/ε) vertices run local algorithm

- if mincut is trivial (single vertex on one side): find min degree
- otherwise, cluster and contract to preserve global mincut #vertices <= n/2 up to (1+ε) factor

- Algorithm: run local algorithm
- if mincut is trivial (single vertex on one side): find min degree
- otherwise, cluster and contract to preserve global mincut #vertices <= n/2 up to (1+ε) factor

- Algorithm: run local algorithm
- if mincut is trivial (single vertex on one side): find min degree
- otherwise, cluster and contract to preserve global mincut #vertices <= n/2 up to (1+ε) factor
- Repeat log2n times: run local algorithm, then cluster+contract
- \rightarrow (1+ ϵ)^{logn} approximation. Set ϵ << 1/logn \rightarrow (1+o(1))-approx

- Algorithm: run local algorithm
- if mincut is trivial (single vertex on one side): find min degree
- otherwise, cluster and contract to preserve global mincut #vertices <= n/2 up to (1+ε) factor
- Repeat log2n times: run local algorithm, then cluster+contract
- \rightarrow (1+ ϵ)^{logn} approximation. Set ϵ << 1/logn \rightarrow (1+o(1))-approx

- "Local Karger contraction" [Nalam-Saranurak'23]:
- mk²polylog(n) randomized time if k vertices on one side
 - k=poly(logn,1/ε)=polylog(n)

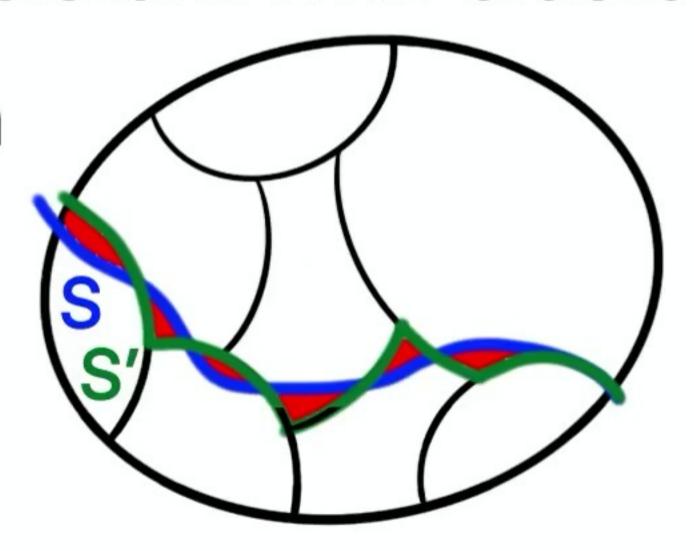
- Algorithm: run local algorithm
- if mincut is trivial (single vertex on one side): find min degree
- otherwise, cluster and contract to preserve global mincut #vertices <= n/2 up to (1+ε) factor
- Repeat log2n times: run local algorithm, then cluster+contract
- \rightarrow (1+ ϵ)^{logn} approximation. Set ϵ << 1/logn \rightarrow (1+o(1))-approx
- "Local Karger contraction" [Nalam-Saranurak'23]:
- mk²polylog(n) randomized time if k vertices on one side
 - k=poly(logn,1/ε)=polylog(n)
 - Overall: mpolylog(n) randomized for (1+o(1))-approx mincut

- Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.
- for any 1.01-approx mincut S, can modify few vertices \rightarrow S' s.t. (1) cost(S') <= (1+ ϵ) cost(S), (2) S' is consistent with clustering

- Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.
- for any 1.01-approx mincut S, can modify few vertices $\rightarrow S'$ s.t.
- (1) $cost(S') <= (1+\epsilon) cost(S)$, (2) S' is consistent with clustering
- Step 1: compute expander decomposition

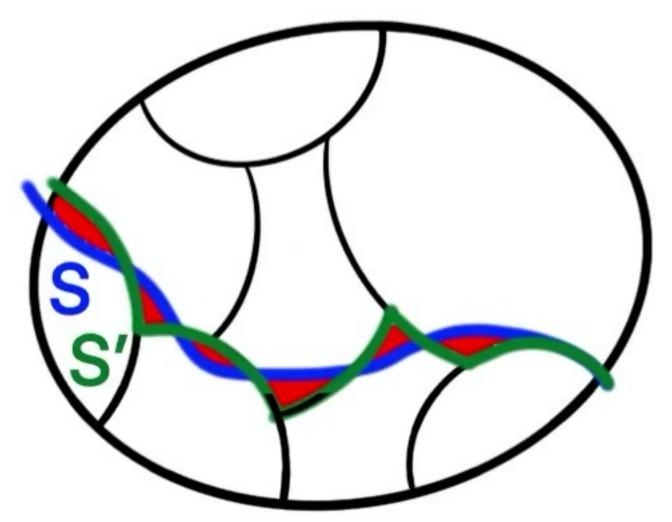
Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approx mincut S, can modify few vertices \rightarrow S' s.t. (1) cost(S') <= (1+ ϵ) cost(S), (2) S' is consistent with clustering



Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approx mincut S, cap modify few vertices \rightarrow S' s.t. (1) cost(S') <= (1+ ϵ) cost(S), (2) S' is consistent with clustering



Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

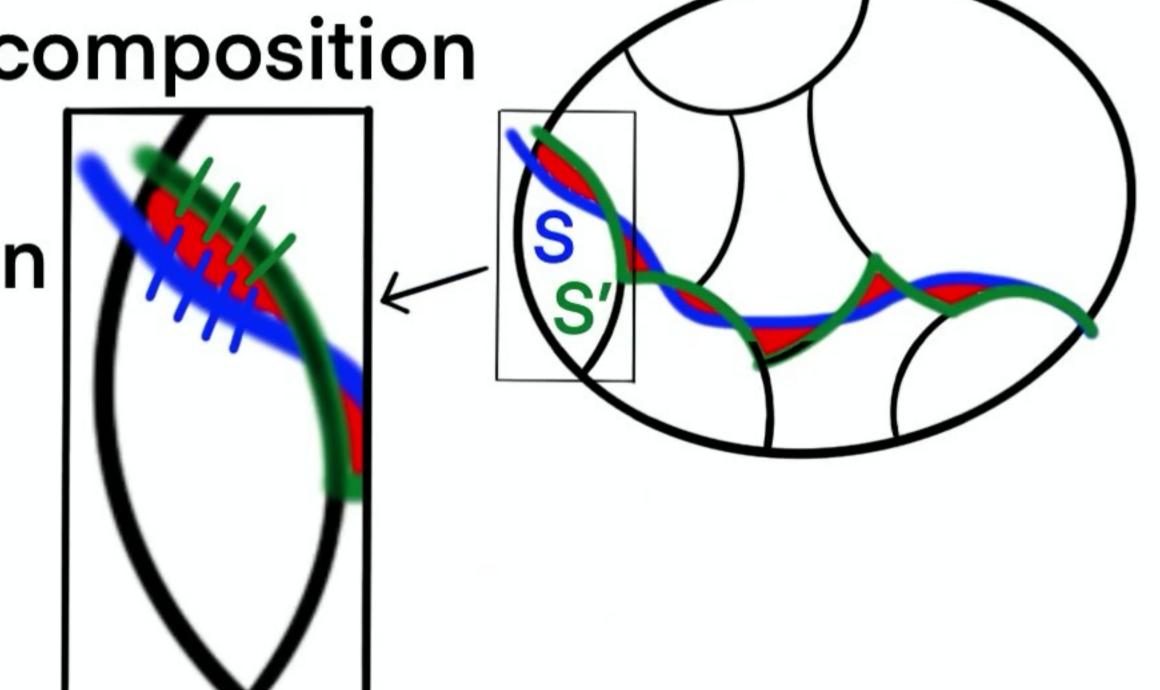
- for any 1.01-approx mincut S, can modify few vertices \rightarrow S' s.t. (1) cost(S') <= (1+ ϵ) cost(S), (2) S' is consistent with clustering



Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approx mincut S, cap modify few vertices \rightarrow S' s.t. (1) cost(S') <= (1+ ϵ) cost(S), (2) S' is consistent with clustering

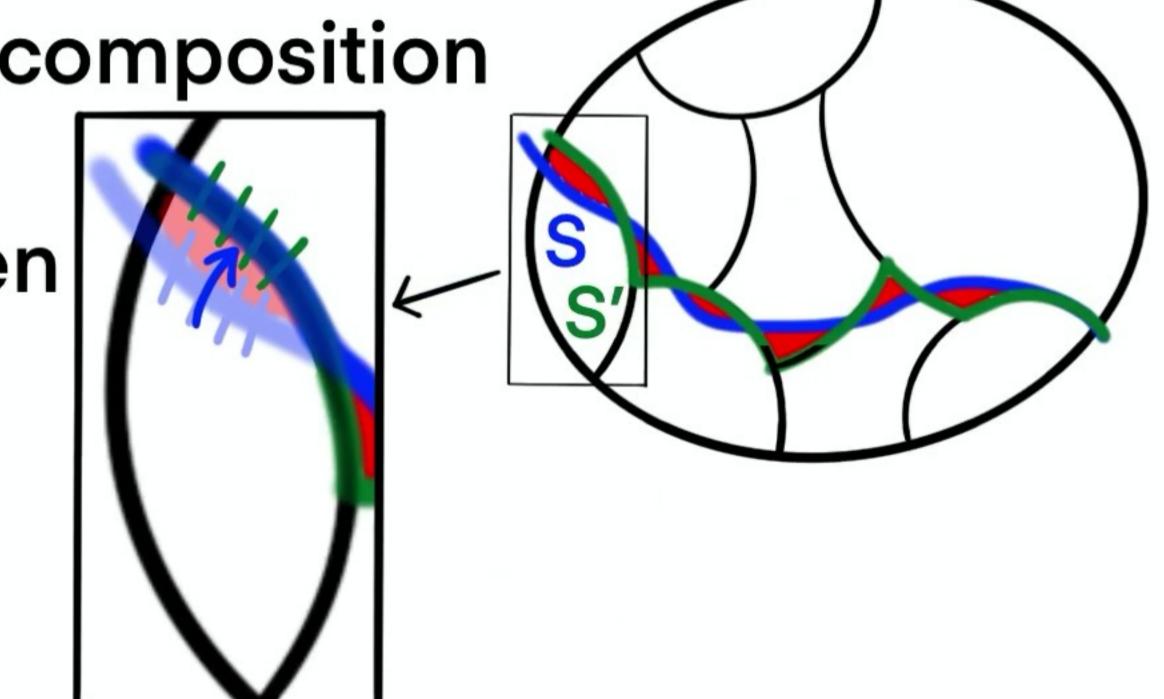
If
$$\times <= (1+\epsilon)x$$
 then



Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approx mincut S, cap modify few vertices \rightarrow S' s.t. (1) cost(S') <= (1+ ϵ) cost(S), (2) S' is consistent with clustering

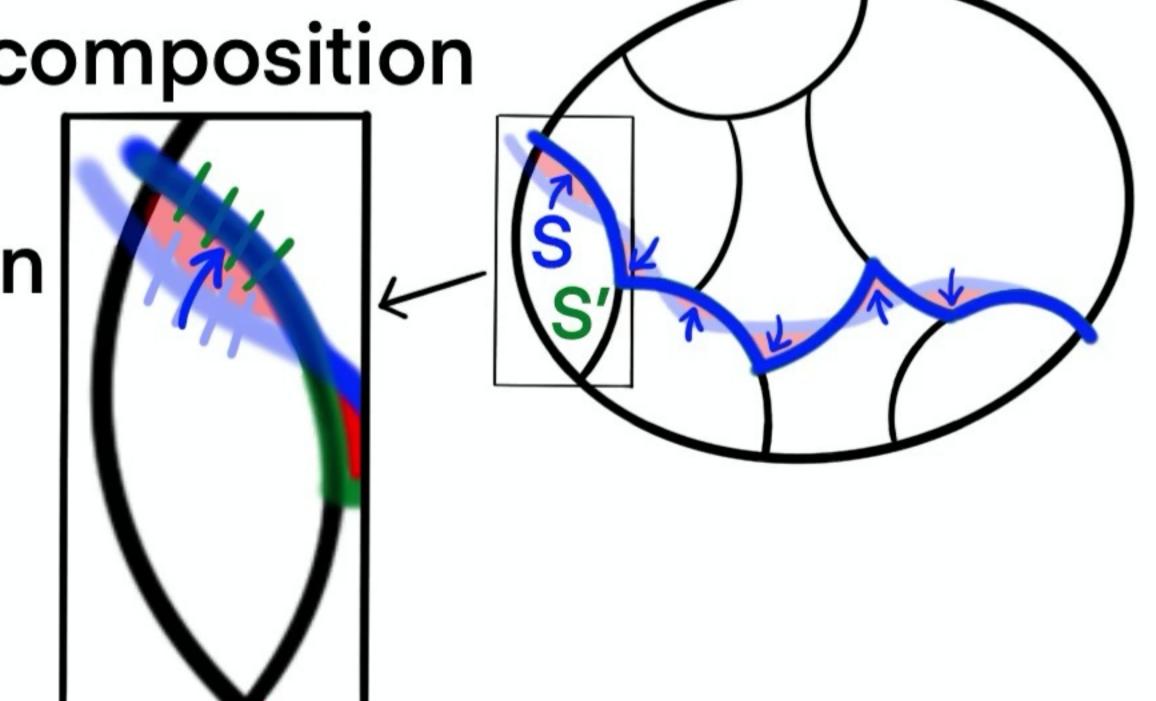
If
$$\times <= (1+\epsilon)x$$
 then



Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approx mincut S, cap modify few vertices \rightarrow S' s.t. (1) cost(S') <= (1+ ϵ) cost(S), (2) S' is consistent with clustering

If
$$\times <= (1+\epsilon)x$$
 then

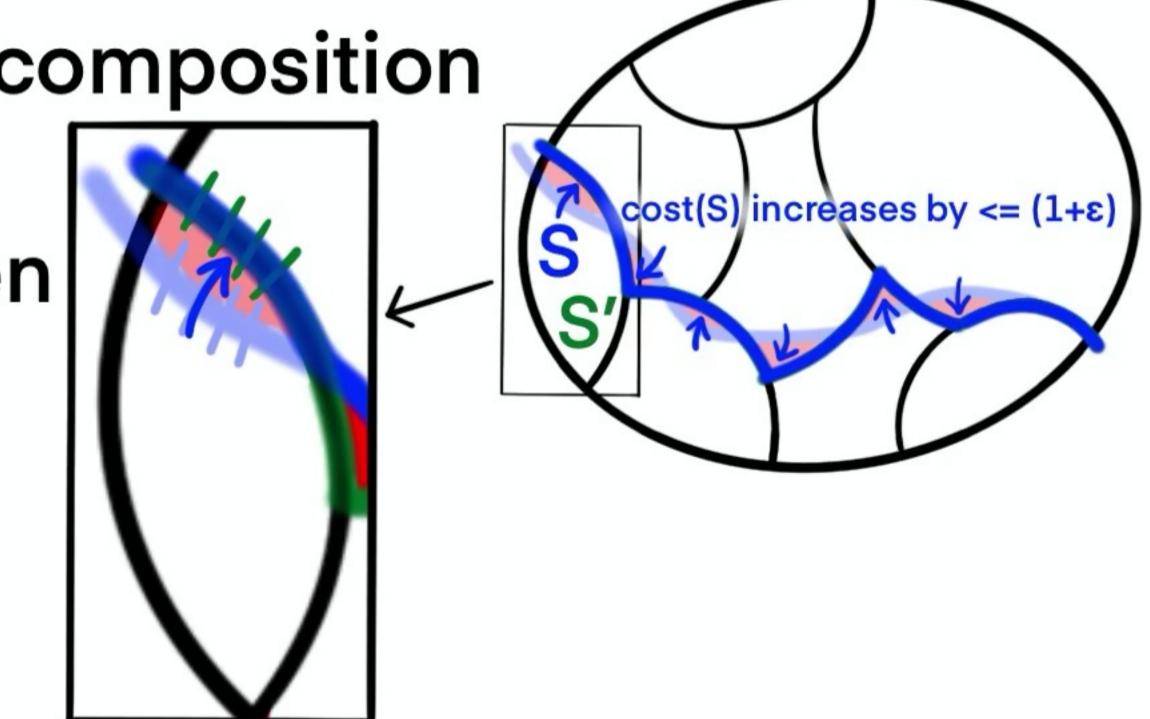


Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approx mincut S, cap modify few vertices \rightarrow S' s.t. (1) cost(S') <= (1+ ϵ) cost(S), (2) S' is consistent with clustering

Step 1: compute expander decomposition

If $\times <= (1+\epsilon)x$ then



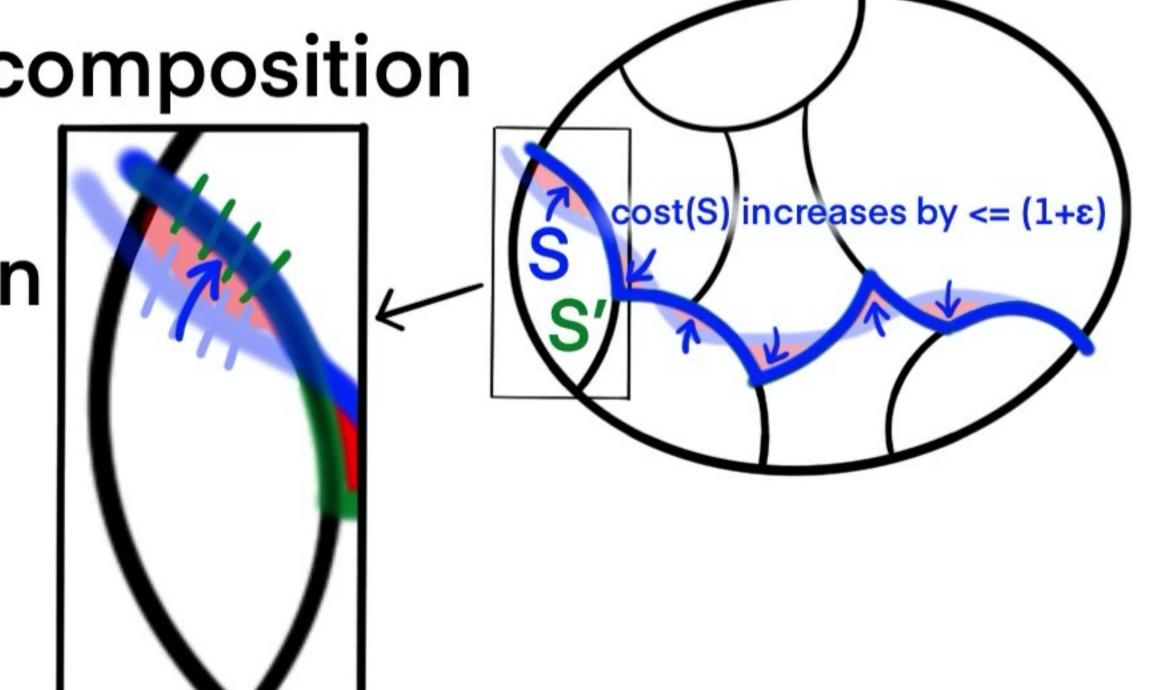
Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approx mincut S, can modify few vertices \rightarrow S' s.t. (1) cost(S') <= (1+ ϵ) cost(S), (2) S' is consistent with clustering

Step 1: compute expander decomposition

If $\times <= (1+\epsilon)x$ then

Else, split cluster



Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

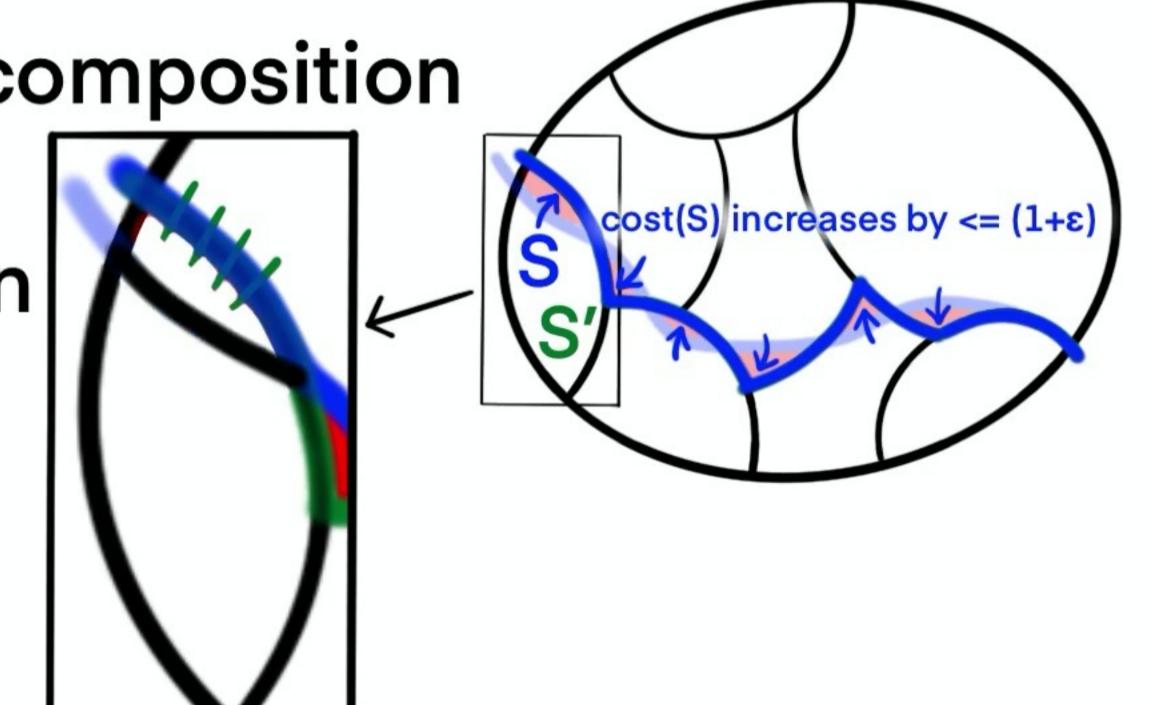
- for any 1.01-approx mincut S, cap modify few vertices \rightarrow S' s.t.

 $(1)\cos(S') \le (1+\epsilon) \cos(S)$, (2)S' is consistent with clustering

Step 1: compute expander decomposition

If $\times <= (1+\epsilon)x$ then

Else, split cluster



Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

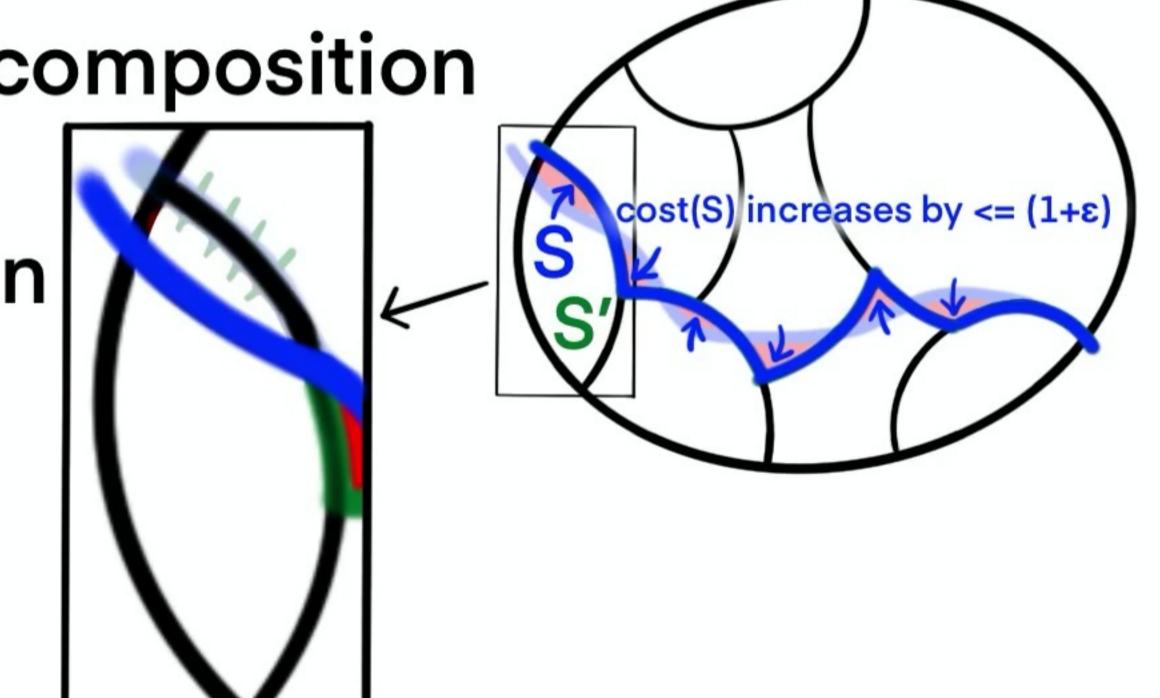
- for any 1.01-approx mincut S, cap modify few vertices $\rightarrow S'$ s.t.

 $(1)\cos(S') \ll (1+\epsilon) \cos(S)$, (2)S' is consistent with clustering

Step 1: compute expander decomposition

If $\times <= (1+\epsilon)x$ then

Else, split cluster



Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approx mincut S, can modify few vertices \rightarrow S' s.t. (1) cost(S') <= (1+ ϵ) cost(S), (2) S' is consistent with clustering

Step 1: compute expander decomposition

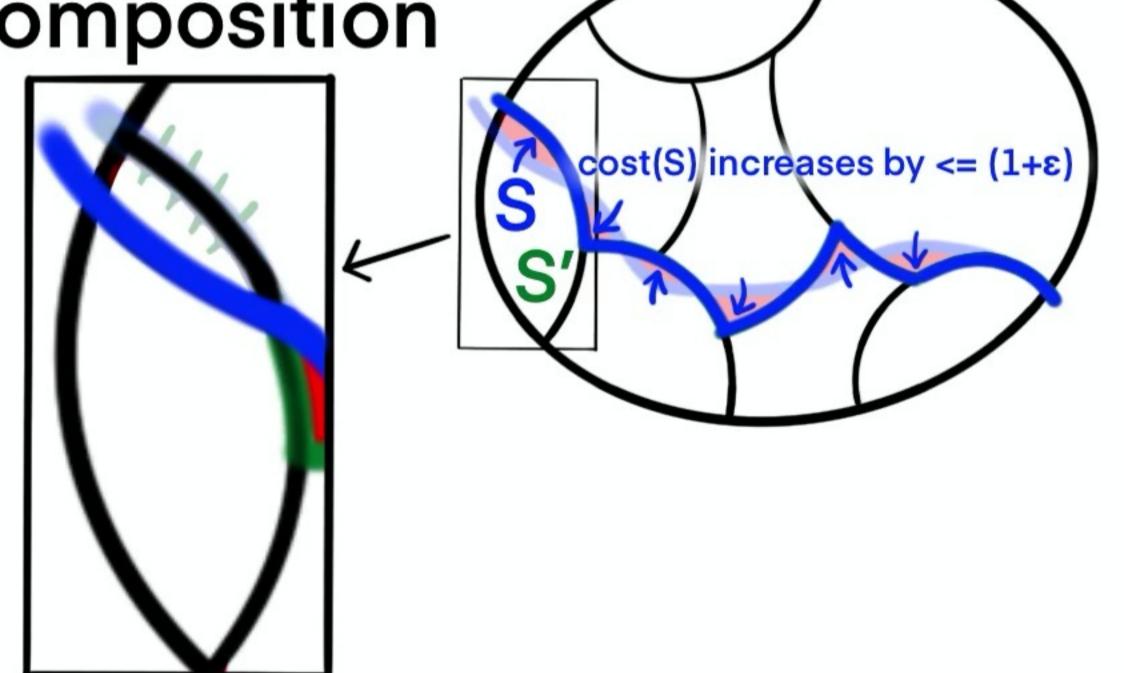
Step 2: while there exists

1.01-approx mincut \$

and cluster C with

> (1+\epsilon)x

split cluster C along \$



Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approx mincut S, cap modify few vertices $\rightarrow S'$ s.t.

$$(1) \cos(S') \le (1+\epsilon) \cos(S)$$
, $(2) S'$ is consistent with clustering

Step 1: compute expander decomposition

Step 2: while there exists

1.01-approx mincut S and cluster C with

> $(1+\epsilon)x$, split cluster C along S This process "converges":

don't cut too many edges in total (analysis is technical)

→ at most n/2 clusters in total

Theorem: for any weighted undirected graph, can group the vertices into $\leq n/2$ clusters s.t.

- for any 1.01-approx mincut S, cap modify few vertices \rightarrow S' s.t.

(1)
$$cost(S') <= (1+\epsilon) cost(S), (2) S' is consistent with clustering$$

Step 1: compute expander decomposition

Step 2: while there exists

1.01-approx mincut S and cluster C with

split cluster C along S

This process "converges":

don't cut too many edges in total (analysis is technical)

 \rightarrow at most n/2 clusters in total

- Naive algorithm is polynomial time: there are <=n² many 1.01-approximate mincuts

- Naive algorithm is polynomial time: there are <=n² many
 1.01-approximate mincuts
- Need near-linear time and deterministic

- Naive algorithm is polynomial time: there are <=n² many
 1.01-approximate mincuts
- Need near-linear time and deterministic
 - Replace expander decomposition with s-strong decomp. [Kawarabayashi-Thorup'15] [Henzinger-Rao-Wang'17]

- Naive algorithm is polynomial time: there are <=n² many
 1.01-approximate mincuts
- Need near-linear time and deterministic
 - Replace expander decomposition with s-strong decomp. [Kawarabayashi-Thorup'15] [Henzinger-Rao-Wang'17]
 - If cluster is small (<= polylog vertices), can use poly-time algorithm ("Small Cluster Decomposition")

- Naive algorithm is polynomial time: there are <=n² many
 1.01-approximate mincuts
- Need near-linear time and deterministic
 - Replace expander decomposition with s-strong decomp. [Kawarabayashi-Thorup'15] [Henzinger-Rao-Wang'17]
 - If cluster is small (<= polylog vertices), can use poly-time algorithm ("Small Cluster Decomposition")
 - If cluster is large?

- Naive algorithm is polynomial time: there are <=n² many
 1.01-approximate mincuts
- Need near-linear time and deterministic
 - Replace expander decomposition with s-strong decomp. [Kawarabayashi-Thorup'15] [Henzinger-Rao-Wang'17]
 - If cluster is small (<= polylog vertices), can use poly-time algorithm ("Small Cluster Decomposition")

- If cluster is large?

call small cluster

decomposition

certified single cluster

"Large Cluster Decomposition"

- Only randomized component in Karger's algorithm is building the skeleton graph (mincut sparsifier)

- Only randomized component in Karger's algorithm is building the skeleton graph (mincut sparsifier)
 - [Karger] Edge sampling gives skeleton graph w.h.p.

- Only randomized component in Karger's algorithm is building the skeleton graph (mincut sparsifier)
 - [Karger] Edge sampling gives skeleton graph w.h.p.
- [Li'21]: deterministic skeleton graph in m1+o(1) time

- Only randomized component in Karger's algorithm is building the skeleton graph (mincut sparsifier)
 - [Karger] Edge sampling gives skeleton graph w.h.p.
- [Li'21]: deterministic skeleton graph in m1+o(1) time
 - Iterative clustering by expander decomposition

- Only randomized component in Karger's algorithm is building the skeleton graph (mincut sparsifier)
 - [Karger] Edge sampling gives skeleton graph w.h.p.
- [Li'21]: deterministic skeleton graph in m1+0(1) time
 - Iterative clustering by expander decomposition
 - Derandomize edge sampling by pessimistic estimator

- Only randomized component in Karger's algorithm is building the skeleton graph (mincut sparsifier)
 - [Karger] Edge sampling gives skeleton graph w.h.p.
- [Li'21]: deterministic skeleton graph in m1+o(1) time
 - Iterative clustering by expander decomposition
 - Derandomize edge sampling by pessimistic estimator
- [This work]: replace expander decomposition by Structure Theorem

- Structure Theorem: new local approach to global mincut

- Structure Theorem: new local approach to global mincut
 - Generalization of Kawarabayashi-Thorup sparsification to weighted graphs

- Structure Theorem: new local approach to global mincut
 - Generalization of Kawarabayashi-Thorup sparsification to weighted graphs
 - Only (1+ε)-approx. algorithm that doesn't use max-flow or Karger's tree packing (global)

- Structure Theorem: new local approach to global mincut
 - Generalization of Kawarabayashi-Thorup sparsification to weighted graphs
 - Only (1+ε)-approx. algorithm that doesn't use max-flow or Karger's tree packing (global)
- Should be useful for global mincut in other settings (dynamic/streaming/distributed)