Deterministic Near-Linear Time
Minimum Cut for Weighted Graphs

Jason Li (Berkeley—CMU)

with Monika Henzinger Satish Rao

Introduction

- Global mincut problem:
given a weighted undirected graph,
delete edges of minimum weight
to disconnect the graph

Introduction

- Global mincut problem: M

given a weighted undirected graph,
all edges

delete edges of minimum weight @ it
to disconnect the graph)‘ Welg

Introduction

- Global mincut problem: I>)-4

given a weighted undirected graph, -
delete edges of minimum weight -
weight 1

to disconnect the graph)‘ :

Introduction

- Global mincut problem: I>)-4

given a weighted undirected graph, -
delete edges of minimum weight W S
weight 1

to disconnect the graph)‘ :

- [Karger'96] randomized algorithm in O(mlog3n) time
“Is there a deterministic near-linear time algorithm?”

Introduction

- Best bound remained 6(mn) for 20 years until

Introduction

- Best bound remained 6(mn) for 20 years until
- [Kawarabayashi-Thorup’15] O(m) for simple graphs

unweighted graphs without parallel edges

Introduction

- Best bound remained 6(mn) for 20 years until
- [Kawarabayashi-Thorup’15] O(m) for simple graphs

unweighted graphs without parallel edges

- [Li-Panigrahi’20] max-flow time for weighted graphs

Introduction

- Best bound remained 6(mn) for 20 years until
- [Kawarabayashi-Thorup’15] O(m) for simple graphs

unweighted graphs without parallel edges

- [Li-Panigrahi’20] max-flow time for weighted graphs

- [Li"21] m**°) time independent of max-flow
"almost-linear time”

Introduction

- Best bound remained 6(mn) for 20 years until
- [Kawarabayashi-Thorup’15] O(m) for simple graphs

unweighted graphs without parallel edges

- [Li-Panigrahi’20] max-flow time for weighted graphs

- [Li"21] m**°) time independent of max-flow
"almost-linear time”

- [This work] O(m) time, answering Karger's question

Outline

- Local win/win approach to global mincut

Outline

- Local win/win approach to global mincut
- Our main structural theorem

Outline

- Local win/win approach to global mincut

- Our main structural theorem

- New randomized (1+¢&)-approximate global mincut
(main conceptual contribution)

Outline

- Local win/win approach to global mincut

- Our main structural theorem

- New randomized (1+¢&)-approximate global mincut
(main conceptual contribution)

- Derandomize and obtain exact mincut
(technical: 40+ pages)

. ocal Method

win/win approach:
- If solution is local, then run local algorithm

. ocal Method

win/win approach: s
- If solution is local, then run local algorithm e

Local Method

OPT

’a explore
r‘é local
Z{neighborhgdd

win/win approach:
- If solution is local, then run local algorithm

Local Method

win/win approach:
- If solution is local, then run local algorithm

Local Method

win/win approach: rl o
veriex.
- If solution is local, then run local algorithm n x (local time)

Local Method

win/win approach: o eehegany
veriex.
- If solution is local, then run local algorithm n x (local time)

- otherwise, reduce graph while preserving mincut

. ocal Method

win/win approach: Y SV G sart st aach
3 J-)vertex:

- If solution is local, then run local algorithm n x (local time)

- otherwise, reduce graph while preserving mincut

@ contract y - '_ "

Local Method

win/win approach: e S
veriex.
- If solution is local, then run local algorithm n x (local time)
- otherwise, reduce graph while preserving mincut
OP OPT e o

contract %

consistent with
clustering

Local Method

win/win approach: a2 wethran
veriex.
- If solution is local, then run local algorithm n x (local time)

- otherwise, reduce graph while preserving mincut
OP OPT e o
contract ; N'/\'
consistent with
example: custering
Kawarabayashi-Thorup sparsification for global mincut on

simple graphs [KT'15]:

Local Method

win/win approach: a2 wethran
veriex.
- If solution is local, then run local algorithm n x (local time)

- otherwise, reduce graph while preserving mincut
- contract 05 PT_X‘/_'_
example: ETL'LTZ‘ZZ‘ -
Kawarabayashi-Thorup sparsification for global mincut on
simple graphs [KT'15]:
- If mincut is trivial (single vertex on one side): find min degree

. ocal Method

win/win approach: gl 5T, et e
3 J-)vertex:

- If solution is local, then run local algorithm n x (local time)

- otherwise, reduce graph while preserving mincut

OP@ contract O; P-%:{

consistent with

example: custering

Kawarabayashi-Thorup sparsification for global mincut on
simple graphs [KT'15]:

- If mincut is trivial (single vertex on one side): find min degree
- otherwise, cluster and contract to preserve global mincut

. ocal Method

win/win approach: P4 S Gy start atoach
N J—-)vertex:

- If solution is local, then run local algorithm n x (local time)

- otherwise, reduce graph while preserving mincut

OP@ contract O; P-%:{

consistent with

example: custering
Kawarabayashi-Thorup sparsi
simple graphs [KT'15]:

- If mincut is trivial (single vertexjon one side): find min degree
- otherwise, cluster and contract to preserve global mincut

\cation for global mincut on

Structural Theorem

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.

Structural Theorem

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- for any 1.01-approximate mincut side S,

Structural Theorem

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- for any 1.01-approximate mincut side S, can

add/remove poly(logn,1/¢g) vertices — S’

Structural Theorem

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- for any 1.01-approximate mincut side S, can

add/remove poly(logn,1/¢g) vertices — S’

s.t. (1) cost(S’) <= (1+¢) cost(S), and

Structural Theorem

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- for any 1.01-approximate mincut side S, can
add/remove poly(logn,1/¢g) vertices — S’
s.t. (1) cost(S’) <= (1+¢) cost(S), and
(2) S’ Is consistent with clustering

Structural Theorem

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- for any 1.01-approximate mincut side S, can
add/remove poly(logn,1/¢g) vertices — S’
s.t. (1) cost(S’) <= (1+¢) cost(S), and
(2) S’ Is consistent with clustering

Structural Theorem

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- for any 1.01-approximate mincut side S, can
add/remove poly(logn,1/¢g) vertices — S’
s.t. (1) cost(S’) <= (1+¢) cost(S), and
(2) S’ Is consistent with clustering

S

S'=¢ degenerate cut

Structural Theorem

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- for any 1.01-approximate mincut side S, can

add/remove poly(logn,1/¢g) vertices — S’

s.t. (1) cost(S’) <= (1+¢) cost(S), and

(2) S’ is consistent with clustering Q'
_ =¢ degenerate cut
If S’ Is degenerate, then S must be unbalanced

S

Structural Theorem

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- for any 1.01-approximate mincut side S, can

add/remove poly(logn,1/¢) vertices — S’

s.t. (1) cost(S’) <= (1+¢) cost(S), and

(2) S’ is consistent with clustering g
_ =¢ degenerate cut
If S’ is degenerate, then S must be unbalanced

S

Example 1: path graph

e ——————a)

Structural Theorem

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- for any 1.01-approximate mincut side S, can

add/remove poly(logn,1/¢g) vertices — S’

s.t. (1) cost(S’) <= (1+¢) cost(S), and

(2) S’ Is consistent with clustering g
_ =¢ degenerate cut
If S’ iIs degenerate, then S must be unbalanced

S

Example 1: path graph

G s e e s e

Structural Theorem

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- for any 1.01-approximate mincut side S, can

add/remove poly(logn,1/¢g) vertices — S’

s.t. (1) cost(S’) <= (1+¢) cost(S), and

(2) S’ Is consistent with clustering Q'
_ =¢ degenerate cut
If S’ Is degenerate, then S must be unbalanced

S

Example 1: path graph

o

S

Structural Theorem

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- for any 1.01-approximate mincut side S, can

add/remove poly(logn,1/¢g) vertices — S’

s.t. (1) cost(S’) <= (1+¢) cost(S), and

(2) S" Is consistent with clustering g
_ =¢ degenerate cut
If S’ Is degenerate, then S must be unbalanced

S

Example 1: path graph

G e

S—S'

Structural Theorem

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- for any 1.01-approximate mincut side S, can

add/remove poly(logn,1/¢g) vertices — S’

s.t. (1) cost(S’) <= (1+¢) cost(S), and

(2) S’ Is consistent with clustering g
_ =¢ degenerate cut
If S’ Is degenerate, then S must be unbalanced

S

Example 1: path graph Example 2: clique

Structural Theorem

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- for any 1.01-approximate mincut side S, can

add/remove poly(logn,1/¢g) vertices — S’

s.t. (1) cost(S’) <= (1+¢) cost(S), and

(2) S’ Is consistent with clustering gl
_ =¢ degenerate cut
If S’ Is degenerate, then S must be unbalanced

S

Example 1: path graph Example 2: clique

Structural Theorem

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- for any 1.01-approximate mincut side S, can

add/remove poly(logn,1/¢) vertices — S’

s.t. (1) cost(S’) <= (1+¢) cost(S), and

(2) S’ Is consistent with clustering g
_ =¢ degenerate cut
If S’ is degenerate, then S must be unbalanced

S

Example 1: path graph Example 2: clique

OS’
E ; S
S8’

Structural Theorem

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- for any 1.01-approximate mincut side S, can
add/remove poly(logn,1/¢g) vertices — S’
s.t. (1) cost(S’) <= (1+¢) cost(S), and
(2) S’ is consistent with clustering "o e

If S’ Is degenerate, then S must be unbalanced
local algorithm [Kawarabayashi-Thorup]:

- If mincut is trivial (single vertex on one side): find min degree
- otherwise, cluster and contract to preserve global mincut

S

Structural Theorem

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- for any 1.01-approximate mincut side S, can
add/remove poly(logn,1/¢g) vertices — S’
s.t. (1) cost(S’) <= (1+¢) cost(S), and
(2) S’ is consistent with clustering ™
_ =¢ degenerate cut
If S’ Is degenerate, then S must be unbalanced

S

AIgc’”thmunbala:mced <= poly(logn,1/¢) vertices run local algorithm

- If mincut iIstrdat (stagle-vertex on one side): fira-min-degree-

- otherwise, cluster and contract to preserve global mincut
#vertices <= n/2 up to (1+¢) factor

(1+€)-approximate mincut

AIgorlthmlﬂ'ilnbalanced <= poly(logn,1/¢) vertices run local algorithm

- If mincut istrval (sthgle-vertex on one side): fird-min-degree-

- otherwise, cluster and contract to preserve global mincut
. S <=1 up to (1+¢) factor

(1+€)-approximate mincut

AIgc’“thmﬁmbalanced <= poly(logn,1/¢) vertices run local algorithm

- If mincut istrval (sthgle-vertex on one side): fird-min-degree-

- otherwise, cluster and contract to preserve global mincut
up to (1+¢) factor

Repeat logsn times: run Iocal algorlthm then cluster+contract
— (1+s)-- .l apprOX|mat|on. Sete<<1/ — (1+0(1))-approx

(1+€)-approximate mincut

AIgc’“thmtmmbalanced <= poly(logn,1/¢) vertices run local algorithm

- If mincut istrvat (sthgle-vertex on one side): fird-min-degree-

- otherwise, cluster and contract to preserve global mincut
up to (1+¢) factor

Repeat log:n times: run Iocal algorlthm then cluster+contract
(1+s) apprOX|mat|on Set € << 1/logn — (1+0(1))-approx

“Local Karger contraction” [Nalam-Saranurak’23]:

mk?polylog(n) randomized time if k vertices on one side
k=poly(logn,1/g)=polylog(n)

jmli
Rectangle

jmli
Typewriter
m

(1+€)-approximate mincut

AIgc’“thmtmmbalanced <= poly(logn,1/¢) vertices run local algorithm

- If mincut istrvat (sthgle-vertex on one side): fird-min-degree-

- otherwise, cluster and contract to preserve global mincut
up to (1+¢) factor

Repeat logsn times: run Iocal algorlthm then cluster+contract
(1+s) apprommahon Sete<<1/ — (1+0(1))-approx

“Local Karger contraction” [Nalam-Saranurak’23]:

mk?polylog(n) randomized time if k vertices on one side
k=poly(logn,1/¢g)=polylog(n)

Overall: mpolylog(n) randomized for (1+0(1))-approx mincut

jmli
Rectangle

jmli
Typewriter
m

Structure Theorem Proof Outline

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- for any 1.01-approx mincut S, can modify few vertices — S’ s.t.

(1) cost(S’) <= (1+¢€) cost(S), (2) S’ is consistent with clustering

Structure Theorem Proof Outline

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- for any 1.01-approx mincut S, can modify few vertices — S’ s.t.

(1) cost(S’) <= (1+¢€) cost(S), (2) S’ is consistent with clustering

Step 1: compute expander decomposition

Structure Theorem Proof Outline

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- for any 1.01-approx mincut S, cap modify few vertices — S’ s.t.

(1) cost(S’) <= (1+¢€) cost(S), (2¥S’is consistent with clustering

Step 1: compute expander decomposition

Structure Theorem Proof Outline

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- f?r any 1.01-approx mincut S, cap modify few vertices — S’ s.t.

(1L cost(S’) <= (1+¢€) cost(S), (2¥S’is consistent with clustering

Step 1: compute expander decomposition

Structure Theorem Proof Outline

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.

- for any 1.01-approx mincut S, cap modify few vertices — S’ s.t.
(1?cost(8’) <= (1+¢) cost(S), (2FS’is consistent with clustering

Step 1: compute expander decomposition

b |-
/

Structure Theorem Proof Outline

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.

- for any 1.01-approx mincut S, cap modify few vertices — S’ s.t.
(1?cost(8') <= (1+¢) cost(S), (2FS’is consistent with clustering

Step 1: compute expander decomposition

If *& = (1+¢&)X then e/

Structure Theorem Proof Outline

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.

- for any 1.01-approx mincut S, cap modify few vertices — S’ s.t.
(1?cost(8') <= (1+¢) cost(S), (2FS’is consistent with clustering

Step 1: compute expander decomposition

If "5& = (1+¢&)X then ,(/

Structure Theorem Proof Outline

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- ffr any 1.01-approx mincut S, cap modify few vertices — S’ s.t.

(1 cost(S’) <= (1+¢€) cost(S), (2¥S’is consistent with clustering

Step 1: compute expander decomposition ‘
If ’5& = (1+¢&)X then ' ‘ e %"

/

Structure Theorem Proof Outline

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.

- for any 1.01-approx mincut S, cap modify few vertices — S’ s.t.
(1?cost(8') <= (1+¢) cost(S), (2FS’is consistent with clustering

Step 1: compute expander decomposition

If *& = (1+¢&)X then ,(/

Structure Theorem Proof Outline

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- f?r any 1.01-approx mincut S, cap modify few vertices — S’ s.t.

(1 cost(S’) <= (1+¢€) cost(S), (2¥S’is consistent with clustering

Step 1: compute expander decomposition

If ’5& = (1+¢&)X then ,(/

Else, split cluster

Structure Theorem Proof Outline

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- f?r any 1.01-approx mincut S, cap modify few vertices — S’ s.t.

(1L cost(S’) <= (1+¢€) cost(S), (2¥S’is consistent with clustering

Step 1: compute expander decomposition

|f ’5& = (1+€)X then ,(/

Else, split cluster

Structure Theorem Proof Outline

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- f?r any 1.01-approx mincut S, cap modify few vertices — S’ s.t.

(1L cost(S’) <= (1+¢€) cost(S), (2¥S’is consistent with clustering

Step 1: compute expander decomposition

|f ’5& = (1+€)X then 4\/

Else, split cluster

Structure Theorem Proof Outline

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- f?r any 1.01-approx mincut S, cap modify few vertices — S’ s.t.

(1L cost(S’) <= (1+¢€) cost(S), (2¥S’is consistent with clustering

Step 1: compute expander decomposition

Q-
/

Step 2: while there exists
1.01-approx mincut S
and cluster C with

> (14+€)X ,

split cluster C along S

Structure Theorem Proof Outline

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- f?r any 1.01-approx mincut S, cap modify few vertices — S’ s.t.

(1 cost(S’) <= (1+¢€) cost(S), (2¥S’is consistent with clustering

Step 1: compute expander decomposition /O\

Step 2: while there exists This process “converges”:
1.01-approx mincut S don’t cut too many edges in total
and cluster C with (analysis is technical)

> (1+8) XN — at most n/2 clusters in total
split cluster C along S

Structure Theorem Proof Outline

Theorem: for any weighted undirected graph, can group the
vertices into <= n/2 clusters s.t.
- f?r any 1.01-approx mincut S, cap modify few vertices — S’ s.t.

(1 cost(S’) <= (1+¢€) cost(S), (2¥S’is consistent with clustering

Step 1: compute expander decomposition /O\

Step 2: while there exists This process “converges”:
1.01-approx mincut S don’t cut too many edges in total
and cluster C with (analysis is technical)

> (1+8)X Ny, , — at most n/2 clusters in total
split cluster C along S

Structure Theorem Algorithm

- Naive algorithm is polynomial time: there are <=n? many
1.01-approximate mincuts

Structure Theorem Algorithm

- Naive algorithm is polynomial time: there are <=n? many
1.01-approximate mincuts
- Need near-linear time and deterministic

Structure Theorem Algorithm

- Naive algorithm is polynomial time: there are <=n? many
1.01-approximate mincuts
- Need near-linear time and deterministic
- Replace expander decomposition with s-strong decomp.
|Kawarabayashi-Thorup’l5] [Henzinger-Rao-Wang'17]

Structure Theorem Algorithm

- Naive algorithm is polynomial time: there are <=n? many
1.01-approximate mincuts
- Need near-linear time and deterministic
- Replace expander decomposition with s-strong decomp.
|Kawarabayashi-Thorup’l5] [Henzinger-Rao-Wang'17]
- If cluster is small (<= polylog vertices), can use poly-time
algorithm (“Small Cluster Decomposition”)

Structure Theorem Algorithm

- Naive algorithm is polynomial time: there are <=n? many
1.01-approximate mincuts
- Need near-linear time and deterministic
- Replace expander decomposition with s-strong decomp.
|Kawarabayashi-Thorup’l5] [Henzinger-Rao-Wang'17]
- If cluster is small (<= polylog vertices), can use poly-time
algorithm (“Small Cluster Decomposition”)
- If cluster is large?

Structure Theorem Algorithm

- Naive algorithm is polynomial time: there are <=n? many
1.01-approximate mincuts
- Need near-linear time and deterministic
- Replace expander decomposition with s-strong decomp.
|Kawarabayashi-Thorup’l5] [Henzinger-Rao-Wang'17]
- If cluster is small (<= polylog vertices), can use poly-time
algorithm (“Small Cluster Decomposition”)

- i 2
If cluster is large” iliiad

single cluster

call small cluster

4 " “Large Cluster Decomposition”
ecomposmon

From Approximate to Exact Mincut

- Only randomized component in Karger’'s algorithm is
building the skeleton graph (mincut sparsifier)

From Approximate to Exact Mincut

- Only randomized component in Karger’'s algorithm is
building the skeleton graph (mincut sparsifier)
- [Karger] Edge sampling gives skeleton graph w.h.p.

From Approximate to Exact Mincut

- Only randomized component in Karger’'s algorithm is
building the skeleton graph (mincut sparsifier)
- [Karger] Edge sampling gives skeleton graph w.h.p.
- [Li'21]): deterministic skeleton graph in mi+ell) time

From Approximate to Exact Mincut

- Only randomized component in Karger’'s algorithm is
building the skeleton graph (mincut sparsifier)
- [Karger] Edge sampling gives skeleton graph w.h.p.
- [Li'21]): deterministic skeleton graph in mi+ell) time
- Iterative clustering by expander decomposition

From Approximate to Exact Mincut

- Only randomized component in Karger’'s algorithm is
building the skeleton graph (mincut sparsifier)
- [Karger] Edge sampling gives skeleton graph w.h.p.
- [Li'21]): deterministic skeleton graph in mi+ell) time
- Iterative clustering by expander decomposition
- Derandomize edge sampling by pessimistic estimator

From Approximate to Exact Mincut

- Only randomized component in Karger’'s algorithm is
building the skeleton graph (mincut sparsifier)
- [Karger] Edge sampling gives skeleton graph w.h.p.
- [Li'21]: deterministic skeleton graph in mi+el) time
- Iterative clustering by expander decomposition
- Derandomize edge sampling by pessimistic estimator
- [This work]: replace expander decomposition by
Structure Theorem

Conclusion

- Structure Theorem: new local approach to global mincut

Conclusion

- Structure Theorem: new local approach to global mincut
- Generalization of Kawarabayashi-Thorup sparsification
to weighted graphs

Conclusion

- Structure Theorem: new local approach to global mincut
- Generalization of Kawarabayashi-Thorup sparsification
to weighted graphs
- Only (1+¢€)-approx. algorithm that doesn’t use
max-flow or Karger’s tree packing (global)

Conclusion

- Structure Theorem: new local approach to global mincut
- Generalization of Kawarabayashi-Thorup sparsification
to weighted graphs
- Only (1+¢&)-approx. algorithm that doesn’t use
max-flow or Karger’s tree packing (global)
- Should be useful for global mincut in other settings
(dynamic/streaming/distributed)

