Joint with Anupam Gupta (CMU), Euiwoong Lee (NYU)

FOCS 2018 10/7/2018

Faster Exact and Approximate k-cut Jason Li

Min k-aut Problem

- ≥k components Exact Time · Karger's random edge contraction: $O(n^{2k})$ · Harder than k-clique: $\Omega(n^{(w/3)k})$
- · Faster exact?

- ≥k components Exact Time Karger's random edge contraction: Fine-grained O(n^{2k})
 Contraction: Fine-grained O(n^{2k})
 Harder than K-clique: D(n^{(w/3)k})
 - · Faster exact?

- ≥k components Karger's random edge contraction: Fine-grained complexity? [O(n^{2k})
 Harder than k-clique: D(n^{(w/3)k})
 Man'17] (2-E)-apx is assuming Small
 - · Faster exact?

Min k-aut Problem · Given graph G, delete min weight edges to cut graph into · [Man'17] (2-E)-apx is NP-hard, assuming Small Set Expansion [GLL'18] 1.9997-apx in FPT time f(k) poly(n) · Better apx?

≥k components

Min k-aut Problem · Given graph G, delete min weight edges to cut graph into Exact Time <u>Approx</u> • Karger's random edge contraction: Fine-grained $O(n^{2k})$ • Contraction: Fine-grained $O(n^{2k})$ • [SV'95] Greedy 2-apx • [Man'17] (2-E)-apx is NP-hard, assuming Small Set Expansion EDT 10 • This work: exact $O(n^{(aw/3+o(1))k})$. Better apx?

≥k components

Min k-aut Problem · Given graph G, delete min weight edges to cut graph into Exact Time <u>Approx</u> • Karger's random edge $O(n^{2k})$ • [SV'95] Greedy 2-apx contraction: Fine-grained $O(n^{2k})$ • [Man'17] (2-E)-apx is NP-hard, • Harder than k-clique: $\Omega(n^{(W/3)k})$ • [Man'17] (2-E)-apx is Expansion assuming Small Set Expansion • Faster exact? • This work: exact $O(n^{(aw/3+o(1))k})$ $w^{(1,bk)}$ • [GLL'18] 1.9997-apx in FPT time f(k) poly(n) • Better apx? • This work: (1+c)-apx in f(k,c)n^{(k+o(1)})</sup>

- ≥k components

Min k-aut Problem · Given graph G, delete min weight edges to cut graph into Exact Time • Karger's random edge contraction: Fine-grained $O(n^{2k})$ • Esv'95] Greedy 2-apx • [Sv'95] Greedy 2-apx • [Man'17] (2-E)-apx is NP-hard, assuming Small Set Expansion Approx • [Sv'95] Greedy 2-apx • [Man'17] (2-E)-apx is NP-hard, assuming Small Set Expansion • Faster exact? • This work: exact $O(n^{(aw/3+o(1))k})$ $= n^{(.bk)}$ • [GLL'18] <u>1.9997-apx</u> in FPT time f(k) poly(n) • Better apx? • This work: $(1+\varepsilon)$ -apx in $f(k,\varepsilon)n^{(k+o(1))}$ • This work: $(1+\varepsilon)$ -apx in FPT time

- · Given graph G, delete min weight edges to cut graph into ≥k components Exact Time Karger's random edge
 Contraction: Fine-grained O(n^{2k})
 Complexity? [O(n^{2k}))
 Harder than k-clique: D(n^{(W/3)k}) · Faster exact? • This work: exact O(n(2w/3+o(1))k)

Techniques

· Given graph G, delete min weight edges to cut graph into ≥k components • Karger's random edge contraction: Fine-grained $O(n^{2k})$ • Harder than k-clique: $\Omega(n^{(w/3)k})$ -· Faster exact? • This work: exact O(n(2w/3+o(1))k)

Techniques

> Idea: connect k-cut with K-clique

· Given graph G, delete min weight edges to cut graph into ≥k components Exact Time Karger's random edge contraction: Fine-grained O(n^{2k}) Harder than k-clique: D(n^{(w/3)k}) · Faster exact? • This work: exact O(n(2w/3+o(1))k)

Techniques

Idea: connect k-cut with K-clique · (w/3)k_time k-clique algo using matrix multiplication

· Given graph G, delete min weight edges to cut graph into ≥k components Exact Time Karger's random edge contraction: Fine-grained O(n^{2k}) Harder than k-clique: D(n^{(W/3)k}) · Faster exact? • This work: exact O(n(2w/3+o(1))k)

Techniques

Idea: connect k-cut with K-clique · (w/3)k_time k-clique algo using matrix multiplication • This talk: n(1tw/3)k algo ~n.8k

· Given graph G, delete min weight edges to cut graph into ≥k components Exact Time Karger's random edge contraction: Fine-grained O(n^{2k})
Harder than k-clique: D(n^{(W/3)k}) · Faster exact?

• This work: exact $O(n^{(2w/3+o(1))k})$

Techniques

Idea: connect k-cut with K-clique · (w/3)k_time k-clique algo using matrix multiplication • This talk: n^{(1+w/3)k} algo ~n.8K · Idea 1: Thorup's tree packing • I dea 2: Reduction to (k-1)-respecting • I dea 3: k-clique-like mtx.mult.

Techr

- · Given graph G, delete min wer ≥k components Exact Time Karger's random edge contraction: Fine-grained O(n^{2k})
 Harder than k-clique: D(n^(w/3)) · Faster exact?
- This work: exact O(n(2w/3+o(1)

Hardness from k-clique

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. k-clique-like mtx.mult. >Hardness n(w/3)k

Hardness from k-clique

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. →Hardness n^{(w/3)k}

Idea: suppose optimal k-cut is (k-1) Singletons to rest of graph • K-cut = Ždeg(vi)

Hardness from k-clique

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. →Hardness n^{(w/3)k}

Idea: suppose optimal k-cut is (k-1) Singletons eg(v) rest of graph • $k - cut = \sum_{i=1}^{k-1} deg(v_i) - w(E[v_1, v_2, ..., v_{k-1}])$

Hardness from k-clique

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. k-clique-like mtx.mult. >Hardness n(w/3)k

 \overline{r}

Hardness from k-clique

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. k-clique-like mtx.mult. >Hardness n(w/3)k

maximized

non-singleton cuts

Hardness from k-clique

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. k-clique-like mtx.mult. >Hardness n(w/3)k

maximized

Hardness from k-clique

maximized

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. k-clique-like mtx.mult. >Hardness n(w/3)k

Exact n(1+w/3)k Hardness from k-clique Thorup's tree packing Reduction to (k-1)-resp. Ldea: suppose optimal k-cut is (k-1) k-clique-like mtx.mult. >Hardness n(w/3)k Singletons ag(v) rest of graph n-deg (Vi) n2-deg(vn) instance • k-cut = $\sum deg(v_i) - w(E[v_1, v_2, ..., v_{k-1}])$ Vn · If G is regular, minimized when maximized • maximum when k-clique! ·Add large weights to rule out non-singleton cuts

Hardness

from k-cl	ique	Exact n ^(1+w/3) . Thorup's tree
ut is (k-1) of graph		Reduction to (k- k-clique-like mi >Hardness n(w/3)
(V2,, VK-1) when is maximized maximized when k-clique!	• deg(• min k heavy	hard hard -clique nstance v_n v_n $v) = n^2 \forall v$ t = ut should only cut k-1 $g = dges ((k-1)n^2)$

Hardness

L'dea: suppose optimal K-a rest Singletons **K-1** • K-cut = $\sum deg(v_i) - w(E[v_i])$ • If G is regular, minimized · maximum whe ·Add <u>large</u> weights to rule ow non-singleton cuts

from k-clique		Exact n ^{(1+w/3} Thorup's tree
nt is (k-1) of graph		Reduction to (k k-clique-like m Hardness n ^(w/3)
y V2,, VK-1]) when is maximized an k-clique!	• $deg(x-i)$ • $min k$ heave $\Rightarrow (i)$	hard -clique v_n $v_n = n^2 \forall v = 1$ $v_n = n^2 \forall v = 1$ $v_n = n^2 \forall v = 1$ $v_n = 1$ $v_n = v_n = 1$ $v_n $

Hardness.

from k-cl	ique	Exact n ^(1+w/3) . Thorup's tree
nt is (k-1) of graph		Reduction to (k. k-clique-like mi >Hardness n ^(w/3)
, V2,, VK-1]) when is maximized maximized maximized	deg(i) $deg(i)$ $min k$ $heavi$ i $k - i$	$v_{n}^{V_{1}} = n^{2} \forall v_{0}$ $v_{n}^{2} = n^{2} \forall v$ $(-\omega t \text{ should only cut } k $

→ Thorup's tree packing Reduction to (k-1)-resp. k-clique-like mtx.mult. Hardness n^{(w/3)k}

- Thm [Thorup'08]: Can find poly(n) spanning trees of G with the following property:

Exact n(1+w/3)k -> Thorup's tree packing Reduction to (k-1)-resp. k-clique-like mtx.mult. Hardness n^{(w/3)k}

For any min k-cut, $\exists tree s.t.$ the k-cut cuts $\leq 2k-2$ edges of the tree: $|E_T[V_1^*,...,V_k^*]| \leq 2k-2$

- . Thm [Thorup'08]: Can find poly(n) spanning trees
 - K-cut ≤2k-2 respects the tree

of G with the following preety:

Exact n(1+w/3)k -> Thorup's tree packing Reduction to (k-1)-resp. k-clique-like mtx.mult. Hardness n^{(w/3)k}

For any min k-cut, $\exists tree s.t.$ the k-cut cuts $\leq 2k-2$ edges of the tree: $|E_T[V_1^*,...,V_k^*]| \leq 2k-2$

- Thm [Thorup'08]: Can find poly(n) spanning trees of G with the following property:
 - K-cut ≤2k-2 respects the tree

V4

V*)

(k=6) (k=6)

Exact n(1+w/3)k -> Thorup's tree packing Reduction to (k-1)-resp. k-clique-like mtx.mult. Hardness n^{(w/3)k}

For any min k-cut, $\exists tree s.t.$ the k-cut cuts $\leq 2k-2$ edges of the tree: $|E_T[V_1^*, ..., V_k^*]| \leq 2k-2$

- . Thm [Thorup'08]: Can find poly(n) spanning trees
 - K-cut ≤2k-2 respects the tree

of G with the following property:

Exact n(1+w/3)k -> Thorup's tree packing Reduction to (k-1)-resp. k-clique-like mtx.mult. Hardness n^{(w/3)k}

For any min k-cut, $\exists tree s.t.$ the k-cut cuts $\leq 2k-2$ edges of the tree: $|E_T[V_1^*, ..., V_k^*]| \leq 2k-2$

- . Thm [Thorup'08]: Can find poly(n) spanning trees
 - K-cut ≤2k-2 respects the tree

Exact n(1+w/3)k -> Thorup's tree packing Reduction to (k-1)-resp. k-clique-like mtx.mult. of G with the following property: Hardness n^{(w/3)k} For any min k-cut, $\exists tree s.t.$ the k-cut cuts $\leq 2k-2$ edges of the tree: $|E_T[V_1^*, ..., V_k^*]| \leq 2k-2$

- . Thm [Thorup'08]: Can find poly(n) spanning trees
 - K-cut ≤2k-2 respects the tree

Exact n(1+w/3)k -> Thorup's tree packing Reduction to (k-1)-resp. k-clique-like mtx.mult. of G with the following property: Hardness n^{(w/3)k} For any min k-cut, $\exists tree s.t.$ the k-cut cuts $\leq 2k-2$ edges of the tree: $|E_T[V_1^*,...,V_k^*]| \leq 2k-2$ V^{*}₅

- . Thm [Thorup'08]: Can find poly(n) spanning trees
 - K-cut ≤2k-2 respects the tree

Exact n(1+w/3)k -> Thorup's tree packing Reduction to (k-1)-resp. k-clique-like mtx.mult. of G with the following property: Hardness n^{(w/3)k} For any min k-cut, $\exists tree s.t.$ the k-cut cuts $\leq 2k-2$ edges of the tree: $|E_T[V_1^*,...,V_k^*]| \leq 2k-2$ Ocut ≤2K-2 edges of T

- . Thm [Thorup'08]: Can find poly(n) spanning trees
 - K-cut ≤2k-2 respects the tree

Exact n(1+w/3)k -> Thorup's tree packing Reduction to (k-1)-resp. k-clique-like mtx.mult. of G with the following property: Hardness n^{(w/3)k} For any min k-cut, $\exists tree s.t.$ the k-cut cuts $\leq 2k-2$ edges of the tree: $|E_T[V_1^*,...,V_k^*]| \leq 2k-2$ (best possible) Dout <2k-2 edges of -2) merge como (K=6)

Easy case: O (K-1)-respects tree

Matrix Multiplication

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. -> k-clique-like mtx.mult. Hardness n^{(w/3)k}

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. → k-clique-like mtx.mult. Hardness n^{(w/3)k}

 \overline{r}

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. -> k-clique-like mtx.mult. Hardness n^{(w/3)k}

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. -> k-clique-like mtx.mult. Hardness n^{(w/3)k}

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. → k-clique-like mtx.mult. Hardness n^{(w/3)k}

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. -> k-clique-like mtx.mult. Hardness n^{(w/3)k}

Node weights "weight" of a certain k-clique (negotive) • Unweighted graph: node weights $W(SV_i^*) \in [n^2]$, edge weights $-W(E[V_i^*, V_j^*]) \in [-n^2]$

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. -> k-clique-like mtx.mult. Hardness n^{(w/3)k}

$$V_{i}^{*} \text{ to minimize } k-cut \text{ between}$$

$$V_{ik-1}^{*}$$
of a certain k-clique (negotive)
(SV_{i}^{*}) \in [n^{2}], edge weights - w(E[V_{i}^{*},V_{j}^{*}])
(SV_{i}^{*}) $\in [n^{2}], edge weights - w(E[V_{i}^{*},V_{j}^{*}])$
(we integer weights in [-w,w], in O(W $\cdot n^{(m)}$

Medium case:

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. → k-clique-like mtx.mult. Hardness n^{(w/3)k}

K-cut: cut (K-1) edges of tree to minimize k-cut in G of the k connected components

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. ~> k-clique-like mtx.mult. Hardness n(w/3)k

K-cut: cut (K-1) edges of tree to minimize k-cut in G of the k connected components

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. ~> k-clique-like mtx.mult. Hardness n^{(w/3)k}

Exact n(1+w/3)k (K-1)-respecting tree Thorup's tree packing Reduction to (k-1)-resp. Medium case: (K-1)-respects tree, still want n(W/3)k ~> k-clique-like mtx.mult. K-cut: cut (K-1) edges of tree to minimize k-cut in G Hardness n^{(w/3)k} of the k connected components DP: State (v, s): best way to delete parent edge of v, along with (s-1) edges in v's subtree (s≤k-1)

Exact n(1+w/3)k (K-1)-respecting tree Thorup's tree packing Reduction to (k-1)-resp. Medium case: (K-1)-respects tree, still want n(W/3)k ~> k-clique-like mtx.mult. K-cut: cut (K-1) edges of tree to minimize k-cut in G Hardness n^{(w/3)k} of the k connected components DP: State(v,s): best way to delete parent edge of v, along with (s-1) edges in State(V,2) v's subtree (s≤k-1)

Exact n(1+w/3)k (K-1)-respecting tree Thorup's tree packing Reduction to (k-1)-resp. Medium case: (K-1)-respects tree, still want n(W/3)k ~> k-clique-like mtx.mult. K-cut: cut (K-1) edges of tree to minimize k-cut in G Hardness n^{(w/3)k} of the k connected components DP: State (v, s): best way to delete parent edge of v, along with (s-1) edges in State(V,2) v's subtree (s≤k-1)

Exact n(1+w/3)k (K-1)-respecting tree Thorup's tree packing Reduction to (k-1)-resp. Medium case: (K-1)-respects tree, still want n(W/3)k ~> k-clique-like mtx.mult. K-cut: cut (K-1) edges of tree to minimize k-cut in G Hardness n^{(w/3)k} of the k connected components DP: State (v, s): best way to delete parent edge of v, along with (s-1) edges in State(V,2) v's subtree (s≤k-1)

Exact n(1+w/3)k (K-1)-respecting tree Thorup's tree packing Reduction to (k-1)-resp. Medium case: (K-1)-respects tree, still want n(W/3)k ~> k-clique-like mtx.mult. K-cut: cut (K-1) edges of tree to minimize k-cut in G Hardness n(w/3)k of the k connected components DP: State (v, s): best way to delete parent edge of v, along with (s-1) edges in State(V,2) v's subtree (s≤k-1) Intuition: if delete v's parent, then v's subtree is independent instance

(K-1)-respecting tree Medium case: (K-1)-respects tree, still want n(W/3)K K-cut: cut (K-1) edges of tree to minimize k-cut in G of the k connected components DP: State (v, s): best way to delete parent edge of v, along with (s-1) edges in v's subtree (s≤k-1) Intuition: if delete v's parent, then v's subtree is independent instance Computing State(V,s):

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. ~> k-clique-like mtx.mult. Hardness n^{(w/3)k}

State(v, 6) = ?

(K-1)-respecting tree Medium case: (K-1)-respects tree, still want n(W/3)K K-cut: cut (K-1) edges of tree to minimize k-cut in G of the k connected components DP: State (v, s): best way to delete parent edge ot v, along with (s-1) edges in v's subtree (s≤k-1) Intuition: if delete v's parent, then v's subtree is independent instance Computing State(V,s): · focus on "maximal" edges

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. ~> k-clique-like mtx.mult. Hardness n^{(w/3)k}

State(v, 6) = ?

of the k connected components DP: State (v, s): best way to delete parent edge Intuition: if delete v's parent, then Computing State(V,s): · focus on "maximal" edges

of the k connected components DP: State (v, s): best way to delete parent edge Intuition: if delete v's parent, then Computing State(V,s): · focus on "maximal" edges

of the k connected components DP: State (v, s): best way to delete parent edge Intuition: if delete v's parent, then Computing State(V,s):

2k-2 -> (k-1)-respecting

Thm: Given a (2k-2)-respecting tree, can compute $F(k)n^k$ many trees s.t. one of them is 1-respecting, w.h.p.

Exact n(1+w/3)k -> Reduction to (k-1)-resp. k-clique-like mtx.mult. Hardness n^{(w/3)k}

 $2k-2 \rightarrow (k-1)$ -respecting

Thm: Given a (2k-2)-respecting tree, can compute $F(k)n^k$ many trees s.t. one of them is 1-respecting, w.h.p. · poly(n) trees, one of which is (2k-2)-resp. $\Rightarrow f(k)n^{k+o(l)}$ trees, one of which is (k-l)-resp.

Exact n(1+w/3)k -> Reduction to (k-1)-resp. k-clique-like mtx.mult. Hardness n^{(w/3)k}

2k-2 -> (k-1)-respecting

Thm: Given a (2k-2)-respecting tree, can compute $F(k)n^k$ many trees s.t. one of them is 1-respecting, w.h.p. · poly(n) trees, one of which is (2k-2)-resp. $\Rightarrow f(k)n^{k+o(l)}$ trees, one of which is (k-l)-resp.• n(w/3)k time per tree, f(k) n(1+ w/3)k + o(1) total

Exact n(1+w/3)k -> Reduction to (k-1)-resp. k-clique-like mtx.mult. Hardness n^{(w/3)k}

(ItE)-approx k-cut

Thm: Given (K-1)-respecting tree, can find (1+E)-apx K-cut in f(K,E)poly(n) (FPT) time

 \overline{r}

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. k-clique-like mtx.mult. Hardness n^{(w/3)k}

(ItE)-approx K-cut

Thm: Given (K-1)-respecting tree, can find (ItE)-apx K-cut in f(K,E)poly(n) (FPT) · Exact is impossible in FPT (W[1]-hard)

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. k-clique-like mtx.mult. Hardness n^{(w/3)k}

 $(|t \varepsilon) - app \cap$

Thm: Given (K-1)-respecting tr (1+E)-apx k-cut in f(k, time · Exact is impossible in FPT · Uses approximation algo tec FPT te Apply thm on each of f(K) \rightarrow (1+ ε)-apx in $f(k, \varepsilon)n^{k}$

ox k-cut	Exact n ^(1+w/3) Thorup's tree
ree, can find , E) poly (n) (FPT)	Reduction to (k- k-clique-like mt Hardness n ^(w/3)
- (W[1]-hard) chniques (E-nets) chniques (color-ca)n k+O(1) trees	combined with oding)
+O(1) time	

Open problems

Exact n^{(1+w/3)k} Thorup's tree packing Reduction to (k-1)-resp. k-clique-like mtx.mult. Hardness n^{(w/3)k}

- · Faster exact algo?

- Supper bound n^{(2w/3)k} 2 lower bound n^{(w/3)k}
- Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. k-clique-like mtx.mult. Hardness n^{(w/3)k}
 - "fine-grained complexity" of k-cut?

Open problems

 Faster exact algo? Supper bound n^{(2ω/3)k}
 Clower bound n^{(ω/3)k} "fine-grained complexity" of k-cut? · Faster combinatorial exact algo?

Exact n^{(1+w/3)k} Thorup's tree packing Reduction to (k-1)-resp. k-clique-like mtx.mult. Hardness n^{(w/3)k}

Exact n(1+w/3)k Open problems Thorup's tree packing Reduction to (k-1)-resp. · Faster exact algo? Supper bound n^{(2w/3)k} 2 lower bound n^{(w/3)k} k-clique-like mtx.mult. Hardness n^{(w/3)k} "fine-grained complexity" of k-cut? => f(k) n^{1.99k} extremal # min K-cuts

· Faster combinatorial exact algo? · [GLL'18, unpublished] f(K) n^{1,99k} time · Lower bound nk (combinatorial k-clique)

Open problems

· Faster exact algo? Supper bound n^{(2w/3)k} 2 lower bound n^{(w/3)k} · Faster combinatorial exact algo? · [GLL'18, unpublished] f(K) n^{1.99k} time · Lower bound nk (combinatorial k-clique) · Better approximation? · (1+E)-apx in f(k, E) poly(n) time?

Exact n(1+w/3)k Thorup's tree packing Reduction to (k-1)-resp. k-clique-like mtx.mult. Hardness n^{(w/3)k} "fine-grained complexity" of k-cut? => f(k) n^{1.99k} extremal # min K-cuts

