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as with most optimization problems, two directions of study: exact algos and apx algos. For exact, Karger's mincut algo by random contraction immediately works for k-cut as well: the success probability is 1/n^2k, so we can repeat n^2k times.

on the hardness side, it turns out that this problem is actually harder than the k-clique problem: given an unweighted graph this time, find a k-clique in the graph. There's a popular conjecture that min k-clique requires n^{omega/3*k} time, so this gives a conditional lower bound for k-cut as well




Min k-t Probloum

Jdsts i weigh dges fo ok gaph infy


jmli
Sticky Note
Given the recent trend in fine-grained complexity, one natural question is to bridge the gap between upper and lower bounds, which is currently more than a factor of 2.
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In the apx algo setting, a classical greedy algo of Saran&Vazirani gives a 2-apx, and Manurangsi has recently shown that 2 is the correct answer, assuming SSE.

Given this barrier, a new direction we have taken is trying to bypass this 2 barrier, but allowing slightly more time, say, FPT in k time. That is, a running time of any function of k times poly n.

Of course, the current apx factor is quantitatively small, and an interesting direction is to improve upon this factor, while still maintaining FPT time.
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So in this work, we make progress towards both questions. First, we improve the running time of exact k-cut to * time, where omega is the mtx.mult. constant. With the current value of omega, we get n^{1.6k}. One other thing is that this algorithm only works on integer-weighted graphs, say, integers bounded by poly n, although this covers the unweighted case, which is already interesting.
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On the apx side, our most significant result is a 1+eps apx in n^k time, which is a lot faster than the exact algo, although not FPT time.
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however, we can use our new ideas, along with established tools from our previous paper, to improve the FPT apx to 1.81
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SKIP
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Let's move on to techniques. For the exact case...
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Our main insight in our improved algorithm is to connect the k-cut problem to the more well-studied k-clique problem. We first drew this connection while investigating the hardness reduction...
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but the tool we used naturally came from the algorithmic side, in particular, the use of mtx.mult. in k-clique
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In this talk, I'll outline our slightly weaker n^{1+omega/3 k} algo, which I think provides more insight to this connection with k-clique.
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The algo has three main parts. First, we begin with a tree-packing algo by Thorup, which reduces the k-cut problem to cutting edges of a tree.
Then, there will be a reduction to something called a (k-1)-respecting tree, which will be defined later, and finally, a mtx.mult.-like routine similar to the one in k-clique
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and here's a map of the technical part of this talk
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Let's start with the hardness reduction to k-clique, which is simplest and is where we first drew our connection with k-clique. Our setting is that we have a hard k-clique instance, and we want to construct a k-cut instance whose solution gives the k-clique solution.
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The idea is to consider a special class of k-cuts, the unbalanced ones, with k-1 vertices, each in its own component, plus the rest of the graph.

[[this seems pretty natural, since these types of cuts may say something about the k-1 singleton vertices, for example, whether they form a (k-1)-clique.]]
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now, given such a k-cut, let's try to write the total weight of the cut in a simpler form. First, we can add all the weighted degrees of the singleton vertices. This will correctly count all of these edges across, but it'll double-count the edges between singletons.
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so therefore, we have to subtract the double-counting, which is the edges between the singletons.
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now let's suppose that G is actually regular: all weighted degrees are the same. In that case, this term is always the same, so minimizing k-cut is equivalent to maximizing this. But in the unweighted setting, this is maximized when they form a k-clique.
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Of course, in order to assume that the k-cut has this structure, we need to rule out all other k-cuts, such as ones where the components are balanced in size. We'll do this by adding a collection of large weight edges to block these k-cuts.
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so here's the construction. Take the hard instance of unweighted k-clique, which we want to turn into a k-cut instance.
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Now add an extra vertex, and connect it to all vertices with a large weight, but such that all original vertices now have equal degree.
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so now, the graph is regular on the orig vtcs, but also, we should cut as few heavy edges as possible. the smallest number possible is k-1...
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...and that's precisely when we have k-1 singletons.
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and so we have a k-clique in the original instance iff the min k-cut is a certain value.
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The first ingredient in our algorithm is a result of Thorup, which essentially reduces the min k-cut problem to cutting some 2k-2 edges of a tree.
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we'll call this notion "respecting" the tree
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here's an example of a (k-1)-respected tree. Note that all of these are single edges of the tree that go between components. Note that k-1 is best possible, since the tree must be a spanning tree, so it must span all components.
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and here, we have a tree that is not (k-1)-respected, but is at most (2k-2)-respected.
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With Thorup's tree packing, we can reduce the k-cut problem to the following problem on a tree. For now, imagine focusing on the red tree and ignoring the purple components. First...
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cut some at most 2k-2 edges of the tree; this will split the graph into at most 2k-1 components
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Then, merge some of the components to get k-1 components. If we do it this way, we get exactly the original k-cut. By trying every possible way, we get an alternative n^{2k} algorithm for k-cut, which also happens to be deterministic, and this was Thorup's main result. For our purpose, we want to beat this brute force n^{2k} time.
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Let's now move on to the algorithm on a tree. To build some intuition, let's begin with an easy case. First, the tree is (k-1)-respected, and...
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the tree is also a *star*. So it has a root component and the rest are leaf components.
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The k-cut problem becomes: cut k-1 edges, to minimize the cut between the isolated leaf components and the rest of the graph.
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now, drawing inspiration from the hardness reduction to k-clique, we can write the k-cut solution as the sum of the component boundaries, the blue edges, minus the edges between components, the red edges.
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and now, let's set up a k-clique instance, where the nodes are the leaf components. This instance will actually be weighted, with both node and edge weights, so we're actually solving a min weight k-clique instance. We want to set the weights so that this term corresponds to the node weights, and this term to the edge weights. This can be done by...
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setting each node weight to be the boundary, and an edge between two leaves to be the total weight of edges between the leaves.
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Now, on real edge weights, no non-trivial k-clique algorithm is known. But if the weights are integers bounded by poly n, this can be solved faster, in k-clique time.
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Now suppose we have a (k-1)-respected tree, but it's no longer a star.
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Again, here's a picture of our problem: cut k-1 edges to...
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minimize the edges between the k components
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Our main idea is to combine the k-clique mtx-mult routine with dynamic programming on the tree. We define a state based on each component v and an integer s as follows: we must delete the parent edge of v, and conditioned on that, delete some s-1 edges in the subtree at v to minimize the cut formed by the s edges. For example,...
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here, perhaps the best 3-cut under these restrictions is by cutting the parent edge and these two subtree edges, so this would be the value of State(v,2)
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Or it could be these two subtree edges...
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or these two.
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The intuition for deleting the parent edge is that after doing so, v's subtree is essentially an independent instance. In other words, what we do inside v's subtree, and what we do outside, are basically independent, because we've deleted v's parent edge, so we've deleted all the edges between the subtree and elsewhere, so these are now two disconnected instances. And the notion of independent instances is why the DP works.
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So now how to we compute a state? Here, suppose we want to compute State(v,6), and let's suppose this is the best way to do it.
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Let's only consider the maximal edges that are cut in this subtree. So these are the edges with no ancestor edge in the subtree also cut.


Exacr ﬂa'l‘“/3)K
Medum case: © (k-0)—cospeets Heee, SHIl vant n (W/3)K m'?ai ngﬁg
—> k- ique-like mbxmudt,

K._OJ: C.uk (K-l.) W‘S o‘F' ﬂee to MminImi
nmize K-
0“- .H\g‘ K unm&l CMQWR & |06 Ha A ness n(_U/:s’)k
Stote (v)s): best way A3 debfD porest 2dge g () Stake(v/€) 3
7 DA™ 5

(k~1) —respecting Tree

De:
ofF V ih (s- | >
‘ A o&ma Wivh (5-1) Uljzs In )&c& ~
| V'S subtree (ka"") E State (W
Iﬂ'\'u.t'ﬁon: I'F O\LQIIL VIS fWT, ‘Hf\ﬂll\ U » O @ e(“/3)
V's subtree IS .ll\alﬂaptmdg,;d' nStance \
Compuking SHokelv,s) O
. foms on avimal S g% -

V£ opch W ode (9R) with wda weght Stoke (u, 2)


jmli
Sticky Note
Now, in this case, these two edges are captured by State(u,2), and these by State(u',3), so we don't have to worry about the non-maximal edges. Now as before, we want to make a weighted k-clique instance, but this time, the nodes are all (u,l) tuples, weighted by their DP State.
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This time, the edge weights are the weights of edges between subtrees, negated. Again, this is to deal with double-counting.


Exact olltw/3)K

T\nomp's tree fad{w,

N\d{um sz Y (k’l) —-(‘EGpLd"' Tcee, S'H( want rL(w/.'s’)K Reduction to (K-1)-resp.

ok cut (k) 2dges of Aree to minimize kot in G > ity St
of The K Conaected cmqmnk arAness VN

S"'&"'?-(\/,S): best W o T do e parui !u\ﬂl 2 SWE(V,G)Z?
or V . &Qﬁma Wivh (5-1) Uljf«s n 3 x&@“

V'S subtree (s£k-)

Tatwition: F ddiu V's parent hon ‘
J's subtree 1S ndependodt nStance

(k~1) —respecting tree

DO

Compulting SHokelV,$) u
aal ehges, Suppose [ Mty

. oS On "o '

o for oach W, ode (0, 2) with ned wenghit Stoke (u, 2)

. Edae Weighk betwan (L), (v, 0 ~w(ELTu, V1) {u;s are. incomparable
2

e Find min nodeteda wd\%\d' - diqu (“;,ll)---(ur,lr) ¥, h=s8-4 F


jmli
Sticky Note
Finally, we want a special type of min k-clique: the nodes u_i should be incomparable, this means none should be an ancestor of another, and also, the sum of l_i should be exactly s-1. It turns out that this can also be solved in k-clique time.
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I'll briefly outline our (1+eps)-apx k-cut result, which I think is the second-most interesting. This comes from our following theorem: if we have a (k-1)-respected tree, we can actually compute a (1+eps)-apx in FPT time.
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And this is best possible in FPT time, by a similar reduction from k-clique
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