




jmli
Sticky Note
as with most optimization problems, two directions of study: exact algos and apx algos. For exact, Karger's mincut algo by random contraction immediately works for k-cut as well: the success probability is 1/n^2k, so we can repeat n^2k times.

on the hardness side, it turns out that this problem is actually harder than the k-clique problem: given an unweighted graph this time, find a k-clique in the graph. There's a popular conjecture that min k-clique requires n^{omega/3*k} time, so this gives a conditional lower bound for k-cut as well





jmli
Sticky Note
Given the recent trend in fine-grained complexity, one natural question is to bridge the gap between upper and lower bounds, which is currently more than a factor of 2.



jmli
Sticky Note
In the apx algo setting, a classical greedy algo of Saran&Vazirani gives a 2-apx, and Manurangsi has recently shown that 2 is the correct answer, assuming SSE.

Given this barrier, a new direction we have taken is trying to bypass this 2 barrier, but allowing slightly more time, say, FPT in k time. That is, a running time of any function of k times poly n.

Of course, the current apx factor is quantitatively small, and an interesting direction is to improve upon this factor, while still maintaining FPT time.



jmli
Sticky Note
So in this work, we make progress towards both questions. First, we improve the running time of exact k-cut to * time, where omega is the mtx.mult. constant. With the current value of omega, we get n^{1.6k}. One other thing is that this algorithm only works on integer-weighted graphs, say, integers bounded by poly n, although this covers the unweighted case, which is already interesting.



jmli
Sticky Note
On the apx side, our most significant result is a 1+eps apx in n^k time, which is a lot faster than the exact algo, although not FPT time.



jmli
Sticky Note
however, we can use our new ideas, along with established tools from our previous paper, to improve the FPT apx to 1.81

jmli
Sticky Note
4 MIN



jmli
Sticky Note
SKIP



jmli
Sticky Note
Let's move on to techniques. For the exact case...



jmli
Sticky Note
Our main insight in our improved algorithm is to connect the k-cut problem to the more well-studied k-clique problem. We first drew this connection while investigating the hardness reduction...



jmli
Sticky Note
but the tool we used naturally came from the algorithmic side, in particular, the use of mtx.mult. in k-clique



jmli
Sticky Note
In this talk, I'll outline our slightly weaker n^{1+omega/3 k} algo, which I think provides more insight to this connection with k-clique.



jmli
Sticky Note
The algo has three main parts. First, we begin with a tree-packing algo by Thorup, which reduces the k-cut problem to cutting edges of a tree.
Then, there will be a reduction to something called a (k-1)-respecting tree, which will be defined later, and finally, a mtx.mult.-like routine similar to the one in k-clique



jmli
Sticky Note
and here's a map of the technical part of this talk



jmli
Sticky Note
Let's start with the hardness reduction to k-clique, which is simplest and is where we first drew our connection with k-clique. Our setting is that we have a hard k-clique instance, and we want to construct a k-cut instance whose solution gives the k-clique solution.



jmli
Sticky Note
The idea is to consider a special class of k-cuts, the unbalanced ones, with k-1 vertices, each in its own component, plus the rest of the graph.

[[this seems pretty natural, since these types of cuts may say something about the k-1 singleton vertices, for example, whether they form a (k-1)-clique.]]



jmli
Sticky Note
now, given such a k-cut, let's try to write the total weight of the cut in a simpler form. First, we can add all the weighted degrees of the singleton vertices. This will correctly count all of these edges across, but it'll double-count the edges between singletons.



jmli
Sticky Note
so therefore, we have to subtract the double-counting, which is the edges between the singletons.



jmli
Sticky Note
now let's suppose that G is actually regular: all weighted degrees are the same. In that case, this term is always the same, so minimizing k-cut is equivalent to maximizing this. But in the unweighted setting, this is maximized when they form a k-clique.



jmli
Sticky Note
Of course, in order to assume that the k-cut has this structure, we need to rule out all other k-cuts, such as ones where the components are balanced in size. We'll do this by adding a collection of large weight edges to block these k-cuts.



jmli
Sticky Note
so here's the construction. Take the hard instance of unweighted k-clique, which we want to turn into a k-cut instance.



jmli
Sticky Note
Now add an extra vertex, and connect it to all vertices with a large weight, but such that all original vertices now have equal degree.





jmli
Sticky Note
so now, the graph is regular on the orig vtcs, but also, we should cut as few heavy edges as possible. the smallest number possible is k-1...



jmli
Sticky Note
...and that's precisely when we have k-1 singletons.



jmli
Sticky Note
and so we have a k-clique in the original instance iff the min k-cut is a certain value.

jmli
Sticky Note
5 MIN





jmli
Sticky Note
The first ingredient in our algorithm is a result of Thorup, which essentially reduces the min k-cut problem to cutting some 2k-2 edges of a tree.



jmli
Sticky Note
we'll call this notion "respecting" the tree





jmli
Sticky Note
here's an example of a (k-1)-respected tree. Note that all of these are single edges of the tree that go between components. Note that k-1 is best possible, since the tree must be a spanning tree, so it must span all components.



jmli
Sticky Note
and here, we have a tree that is not (k-1)-respected, but is at most (2k-2)-respected.



jmli
Sticky Note
With Thorup's tree packing, we can reduce the k-cut problem to the following problem on a tree. For now, imagine focusing on the red tree and ignoring the purple components. First...



jmli
Sticky Note
cut some at most 2k-2 edges of the tree; this will split the graph into at most 2k-1 components



jmli
Sticky Note
Then, merge some of the components to get k-1 components. If we do it this way, we get exactly the original k-cut. By trying every possible way, we get an alternative n^{2k} algorithm for k-cut, which also happens to be deterministic, and this was Thorup's main result. For our purpose, we want to beat this brute force n^{2k} time.

jmli
Sticky Note
3MIN



jmli
Sticky Note
Let's now move on to the algorithm on a tree. To build some intuition, let's begin with an easy case. First, the tree is (k-1)-respected, and...



jmli
Sticky Note
the tree is also a *star*. So it has a root component and the rest are leaf components.



jmli
Sticky Note
The k-cut problem becomes: cut k-1 edges, to minimize the cut between the isolated leaf components and the rest of the graph.



jmli
Sticky Note
now, drawing inspiration from the hardness reduction to k-clique, we can write the k-cut solution as the sum of the component boundaries, the blue edges, minus the edges between components, the red edges.



jmli
Sticky Note
and now, let's set up a k-clique instance, where the nodes are the leaf components. This instance will actually be weighted, with both node and edge weights, so we're actually solving a min weight k-clique instance. We want to set the weights so that this term corresponds to the node weights, and this term to the edge weights. This can be done by...



jmli
Sticky Note
setting each node weight to be the boundary, and an edge between two leaves to be the total weight of edges between the leaves.



jmli
Sticky Note
Now, on real edge weights, no non-trivial k-clique algorithm is known. But if the weights are integers bounded by poly n, this can be solved faster, in k-clique time.

jmli
Sticky Note
3 MIN



jmli
Sticky Note
Now suppose we have a (k-1)-respected tree, but it's no longer a star.



jmli
Sticky Note
Again, here's a picture of our problem: cut k-1 edges to...



jmli
Sticky Note
minimize the edges between the k components



jmli
Sticky Note
Our main idea is to combine the k-clique mtx-mult routine with dynamic programming on the tree. We define a state based on each component v and an integer s as follows: we must delete the parent edge of v, and conditioned on that, delete some s-1 edges in the subtree at v to minimize the cut formed by the s edges. For example,...



jmli
Sticky Note
here, perhaps the best 3-cut under these restrictions is by cutting the parent edge and these two subtree edges, so this would be the value of State(v,2)



jmli
Sticky Note
Or it could be these two subtree edges...



jmli
Sticky Note
or these two.



jmli
Sticky Note
The intuition for deleting the parent edge is that after doing so, v's subtree is essentially an independent instance. In other words, what we do inside v's subtree, and what we do outside, are basically independent, because we've deleted v's parent edge, so we've deleted all the edges between the subtree and elsewhere, so these are now two disconnected instances. And the notion of independent instances is why the DP works.



jmli
Sticky Note
So now how to we compute a state? Here, suppose we want to compute State(v,6), and let's suppose this is the best way to do it.



jmli
Sticky Note
Let's only consider the maximal edges that are cut in this subtree. So these are the edges with no ancestor edge in the subtree also cut.



jmli
Sticky Note
Now, in this case, these two edges are captured by State(u,2), and these by State(u',3), so we don't have to worry about the non-maximal edges. Now as before, we want to make a weighted k-clique instance, but this time, the nodes are all (u,l) tuples, weighted by their DP State.



jmli
Sticky Note
This time, the edge weights are the weights of edges between subtrees, negated. Again, this is to deal with double-counting.



jmli
Sticky Note
Finally, we want a special type of min k-clique: the nodes u_i should be incomparable, this means none should be an ancestor of another, and also, the sum of l_i should be exactly s-1. It turns out that this can also be solved in k-clique time.

jmli
Sticky Note
5 MIN









jmli
Sticky Note
I'll briefly outline our (1+eps)-apx k-cut result, which I think is the second-most interesting. This comes from our following theorem: if we have a (k-1)-respected tree, we can actually compute a (1+eps)-apx in FPT time.



jmli
Sticky Note
And this is best possible in FPT time, by a similar reduction from k-clique














