JaSol\ L
W(CMU), Eu.iwoon:\ Lee (NYU)

Joint itk Anupam 6

Min k-t Problam
delgfi min wda‘ﬂ* Cﬂhae-S t wk ﬂm’(’“ into

o (5iven gm(?"‘ 5,
>k (_,sm()w\m‘i's

jmli
Sticky Note
as with most optimization problems, two directions of study: exact algos and apx algos. For exact, Karger's mincut algo by random contraction immediately works for k-cut as well: the success probability is 1/n^2k, so we can repeat n^2k times.

on the hardness side, it turns out that this problem is actually harder than the k-clique problem: given an unweighted graph this time, find a k-clique in the graph. There's a popular conjecture that min k-clique requires n^{omega/3*k} time, so this gives a conditional lower bound for k-cut as well

Min k-t Probloum

Jdsts i weigh dges fo ok gaph infy

jmli
Sticky Note
Given the recent trend in fine-grained complexity, one natural question is to bridge the gap between upper and lower bounds, which is currently more than a factor of 2.

« Retter UKPX?

jmli
Sticky Note
In the apx algo setting, a classical greedy algo of Saran&Vazirani gives a 2-apx, and Manurangsi has recently shown that 2 is the correct answer, assuming SSE.

Given this barrier, a new direction we have taken is trying to bypass this 2 barrier, but allowing slightly more time, say, FPT in k time. That is, a running time of any function of k times poly n.

Of course, the current apx factor is quantitatively small, and an interesting direction is to improve upon this factor, while still maintaining FPT time.

jmli
Sticky Note
So in this work, we make progress towards both questions. First, we improve the running time of exact k-cut to * time, where omega is the mtx.mult. constant. With the current value of omega, we get n^{1.6k}. One other thing is that this algorithm only works on integer-weighted graphs, say, integers bounded by poly n, although this covers the unweighted case, which is already interesting.

Min k-t Problam
| 8mp\,1 6/ o!e,Q,u_'b- Mun wda‘ﬂ* CAtaCS +b Jivy ‘aQJ()lﬂ fnh

o 5iven

>k (_ﬁvn{)wlﬂrd's

Exact Time. AE oY

. Kacaer'S random 992 oK) |+ [SV'95] Greedy A-apX

comtrction | O(n(u/))k (Man1?] (-€)-apx S NP-bar?
. Yadder than kﬂdjqulﬂ(n 3) ASSwming Smal Sk Exposgion

n FPT +fme

. F o s ARAL' 19997 —apr 1O

i K | ((Qw/h .(D\K) [6] - = {' (\d P”e‘j(,ﬂ)
o This work: exocr Ol "\:‘;“Tf « Retter apX- k+o(1)

2 e ks (-ape i RO

jmli
Sticky Note
On the apx side, our most significant result is a 1+eps apx in n^k time, which is a lot faster than the exact algo, although not FPT time.

M}ll k- oK Problam
o (5iven Smp\n 6/ delofi min (,Jmal.d' CCL%?-S h ot ‘aQJ()lq l‘n‘{"o
>k Cﬂﬂpvmnﬁ

EX&CTQAS ’“MQ A it

Ka.raers random ;ﬁl& O(_ﬂgk) . [SV'OISJ Greedy A-apX

contraction: W[WK * (Man 7] (3-€)-apX is Nb-hard,

: Hanlu’ 'H\an \(-d.;quzﬂ(n,) oLQSumurlti Swalll Sex EK?MSW

. t yoct [L 18] 12497 -4¢7 n FPT dime
Fﬂfs e N O((au/h-(l)\k) [: F(k) pneﬂtn)

o WIS \,JDrk: LXOC n oS . BL'H'QF &PX?

i o This work: (\-l'q—ﬂ.fx n —F(\(ﬁ) n,ka)

-’Tk;s work: \Sl-u@l n FPT e

=

jmli
Sticky Note
however, we can use our new ideas, along with established tools from our previous paper, to improve the FPT apx to 1.81

jmli
Sticky Note
4 MIN

Tech X qQUues

jmli
Sticky Note
SKIP

jmli
Sticky Note
Let's move on to techniques. For the exact case...

jmli
Sticky Note
Our main insight in our improved algorithm is to connect the k-cut problem to the more well-studied k-clique problem. We first drew this connection while investigating the hardness reduction...

jmli
Sticky Note
but the tool we used naturally came from the algorithmic side, in particular, the use of mtx.mult. in k-clique

jmli
Sticky Note
In this talk, I'll outline our slightly weaker n^{1+omega/3 k} algo, which I think provides more insight to this connection with k-clique.

G _Veshoigual
o (5 |ven gm()\n 6/ deldoti min Weaqnk
>k (smponents J o bt gaph int

o Easter o xo.ct 7
’ " \tw/
o Thig work: @Xoor O(n(a"m LD\K) b -t vt Jg0
\.‘oY*. B \"%¥~
A il
'IAQ& 1‘= T\\oruf's tree Qu(.kinj

T dea J: Reduction o
(k=1)- respecting

Tdea 3: k=cdaque-like mixmult

jmli
Sticky Note
The algo has three main parts. First, we begin with a tree-packing algo by Thorup, which reduces the k-cut problem to cutting edges of a tree.
Then, there will be a reduction to something called a (k-1)-respecting tree, which will be defined later, and finally, a mtx.mult.-like routine similar to the one in k-clique

Exact alttW/3)k
_Wumpls tree RCEIFJ
Reduction 1o (k-g-rup.

k- ique-tke mbxmult,

HarA ness n(.‘-"/Is') K

K-uque
(w/3)k"' 'hm.ﬂ. K—clique cdao
using macteix mwlhpli codion
o Faster o xo.ct 7 | e/
: (Qw/3t o (DK e This fall: n 0&30
o Thig \,Jork= QY OCK O(YL =) Q¢
b O
r;l,“ - Tdea 4: T\\oruf's tree Qo.dtinj

T dea J: Reduction Yo
(k-1)- respecting

Tdea 3: K- dagque-ike miX mult:

jmli
Sticky Note
and here's a map of the technical part of this talk

Hordness from k- uque Evact nllt®/3)k

T\nomp's tree fadfw]
Reduction to (k-1)-resp.
k- ique-like mbx.mult,

jmli
Sticky Note
Let's start with the hardness reduction to k-clique, which is simplest and is where we first drew our connection with k-clique. Our setting is that we have a hard k-clique instance, and we want to construct a k-cut instance whose solution gives the k-clique solution.

Hordness from k- uque Exact n
_WGWP'S '*T'QQ (“E'J

Reduction to (k-1)-resp.

k- ique-lke mbxmudt,

> HarA ness n(w/z)k

jmli
Sticky Note
The idea is to consider a special class of k-cuts, the unbalanced ones, with k-1 vertices, each in its own component, plus the rest of the graph.

[[this seems pretty natural, since these types of cuts may say something about the k-1 singleton vertices, for example, whether they form a (k-1)-clique.]]

T\nomp's tree f“E'J
Reduction to (K-1)-resp.

k- ique-like mbx.mult,

- HarA ness n(u/g) "

jmli
Sticky Note
now, given such a k-cut, let's try to write the total weight of the cut in a simpler form. First, we can add all the weighted degrees of the singleton vertices. This will correctly count all of these edges across, but it'll double-count the edges between singletons.

_ntoruP'S tree f“k"]
Reduction to (K-1)-resp.

k- ique-like mbx.mult,

> HarA ness n(u/g) .

jmli
Sticky Note
so therefore, we have to subtract the double-counting, which is the edges between the singletons.

Thorup's tree packiey
Reduction 1o (k-g-rcrp.

k- ique-like mbx.mult,

» HarAness n(u/g) .

1=\ o . N 2

oIF G S r%"h‘r) i 22 Whan ¥ 1S
moof.\m\}d
-ma)(}ﬁ‘um W \han \(-cﬂ;qm‘.

jmli
Sticky Note
now let's suppose that G is actually regular: all weighted degrees are the same. In that case, this term is always the same, so minimizing k-cut is equivalent to maximizing this. But in the unweighted setting, this is maximized when they form a k-clique.

M ardness from k- ique | EBxact n(tw/3)k
_nr\orupls tree &CEIFJ
Reduction o (k-g—(esp.

k- Jique-like mbxmudt,

- HarAness n(u/g)k

o A Larq)o. \Ae,'uﬂ\\'\s v rule oWk
non-sinﬁlq,-lw s

jmli
Sticky Note
Of course, in order to assume that the k-cut has this structure, we need to rule out all other k-cuts, such as ones where the components are balanced in size. We'll do this by adding a collection of large weight edges to block these k-cuts.

vact allt@/3)k
_n\or'upls tree (ad:"J
Reduction to (K-1)-resp.

k- Jique-like mbmult,

> HarAnass n(_u/g) o

o PAXIM W W han \('C’Q’:c\"“l"

o A A lmz)o. \Ae.'na\"\i v rule ouwk
nov\-s'mﬁltvhn s

jmli
Sticky Note
so here's the construction. Take the hard instance of unweighted k-clique, which we want to turn into a k-cut instance.

Hocdness From k- cique | Bxach ale/2k

_n\orupls tree fu{fw,
Reduction to (K-1)-resp.
k- ique-lke mbxmudt,

% rest ot Sf'&(\ S g n(_u/z)k
o K' Wx :io\eat\m S U\)(E[VU VZ} e g VKﬂ]) -

'I‘f 6 {g (‘Q,sun-ﬂr) m\mm\z—u\ \,b\'tﬂx\ _ ‘\S
v OOKA TR

jmli
Sticky Note
Now add an extra vertex, and connect it to all vertices with a large weight, but such that all original vertices now have equal degree.

Thorup's tree fadc'w;
Reduction to (K-1)-resp.
k-djqu—lﬁ(e mibx.mult,

rest o 3“‘{’\‘ > \HarA nass n@”mk
% Vy
o K- Wk = 50\2—3(\/0 e U‘)(E[VU Yh) >~} Vkﬂ]) Vi l

zed whan YIS | -degl)=of W

IF G is cepplar, mooimied |, min koo should only cof k-

jmli
Sticky Note
so now, the graph is regular on the orig vtcs, but also, we should cut as few heavy edges as possible. the smallest number possible is k-1...

_n\or'ups tree faﬁkw,
Reduction to (k-1)-resp
k- ique-lke mbxmuldt,

> \HarA nass (- w/3)k

—l'""-ﬁ

[dea: suqpose ophmaﬂ k—ent is (k-1)
Sma\d‘bns rest of 3f1r\~

o K- ok id&g(_\() e U\)(E[Vl} V3, - Vk-l:D
‘I‘f 6 T 3 u-D-ﬂr m\n\rm%u\ \b\\ﬂx\ .
: Qg X \ﬂ\ﬂrﬂk o () k-wd' S\\oulcl bnlj cok k-

Mok

-m&){m\um W lhen k—c,‘qu.‘.

o A L&QQ. \Ae.nﬂ\\‘\s v rule owk”

NOW - Smﬁlm‘hn

jmli
Sticky Note
...and that's precisely when we have k-1 singletons.

_nr\orupls tree packiny
Reduction 1o (k-g-rcrp.

k- (L'qut- ke mbxmult,

rest o Sﬂkf’\ Siiarslaats n(u/z)k

o K- ok :io\eg(\f'.) = W(E[VU V2, "')V“"D
‘ 12\ __Y
.If G is ceaplod winimzed Whan ¥ 1S
| v OOKA TR

jmli
Sticky Note
and so we have a k-clique in the original instance iff the min k-cut is a certain value.

jmli
Sticky Note
5 MIN

l , Exact (It w/3)k
T\\O‘-UP S Tr‘ee Pack\nj S ?E\mmr;'s +cee ﬁackwj

Reduction to (K-1)-resp.

- db'qul- ke mbxmudt,

HarA ness n(_u/g)k

—> T\r\orupls tree ﬁadfw]
Reduction to (K-1)-resp.

Thorup's Tree ?ac.kinj

. ﬂm [—W.oru{)‘og] Cﬂﬂ ‘Flﬂd ?0\3('{) S\oann;nﬂ "h‘eeS k- Lique-lik e muldt
o G with Ha Following pogects et /K

'FD(‘ ij vaLn \(-'c;ud") 3“"‘6?- s.t -\‘(no_ k—cuk
ot € Ak-2 edges £ e tree: |BrVT, vl € k-2

jmli
Sticky Note
The first ingredient in our algorithm is a result of Thorup, which essentially reduces the min k-cut problem to cutting some 2k-2 edges of a tree.

—> _n\ompls tree (GCEI'J
Reduction to (K-1)-resp.

k- ique-like mbxmult,

HarA ness n(u/g)k

jmli
Sticky Note
we'll call this notion "respecting" the tree

—> _n\DWPIS tree (GCEI'J
Reduction to (K-1)-resp.

k- Lique-like mbxmult,

HarA ness n(u/g)k

—> _n\OWPIS tree (GCE“'J
Reduction to (K-1)-resp.

k- ique-like mbxmult,

HarA ness n(u/g)k

jmli
Sticky Note
here's an example of a (k-1)-respected tree. Note that all of these are single edges of the tree that go between components. Note that k-1 is best possible, since the tree must be a spanning tree, so it must span all components.

— _n\OWPIS tree (GCE“'J
Reduction to (K-1)-resp.

k- ique-like mbxmult,

HarA ness n(u/g)k

jmli
Sticky Note
and here, we have a tree that is not (k-1)-respected, but is at most (2k-2)-respected.

—> _n\OWP'S tree (GCE“'J
Reduction to (K-1)-resp.

k- Lique-like mbx.mult,

HarA ness n(u/g)k

jmli
Sticky Note
With Thorup's tree packing, we can reduce the k-cut problem to the following problem on a tree. For now, imagine focusing on the red tree and ignoring the purple components. First...

(tw/3)k
Yact n |
E ?‘:\\OWPIS tree (GCkIFJ
Reduction to (K-1)-resp.

k- cLique-like mbxmult,

(w/3)k
HarAdAneSs N

“ \(i' *
Ve 8 Ng
) ek £9Kk-2 ‘ULQQ—S of T

jmli
Sticky Note
cut some at most 2k-2 edges of the tree; this will split the graph into at most 2k-1 components

E
—>qu'
BT
‘ ms)k
{ON
. e
(k-g“ﬁj
=1 t;
P.

K
~Ju
que
-lke
mtx
mod
+

"
arz

AURYY (
. w/3)k

®©
c,w\'\”
E.silk \(g 3
-] &3&.\’?
S
oY
T

©
m
U @
A

jmli
Sticky Note
Then, merge some of the components to get k-1 components. If we do it this way, we get exactly the original k-cut. By trying every possible way, we get an alternative n^{2k} algorithm for k-cut, which also happens to be deterministic, and this was Thorup's main result. For our purpose, we want to beat this brute force n^{2k} time.

jmli
Sticky Note
3MIN

Exact n(tW/3)K

Motrix Malii p lication act (Db
orup S tree K iy

RM‘W 1o (k- -(QIP_

Casy case D (K-1)—cespects tcee
—> k-cique-lke mbtxmult,

HarAneSs n(.u/'.?) K

jmli
Sticky Note
Let's now move on to the algorithm on a tree. To build some intuition, let's begin with an easy case. First, the tree is (k-1)-respected, and...

Exact n ((+w/3)k

Motrix Madtip licootion ac »
orupS tree ﬁ g

RLAMChL'M 'h) (k (QgP

EGLS:, coS2 ¢ 0, (k l) - €§ptd1 tcee
—> k-cique-lke mbtxmult,
HarA ness

(w/3)k

jmli
Sticky Note
the tree is also a *star*. So it has a root component and the rest are leaf components.

£l 20N
N\q{'rix Mt&. ' \'caj"
é

(k-) —cespechs e
@ °

ot ((+w/3)k
Exa

tree
orups - (k-
&d—m

{

ackiry

(esp.

mult,
Jique-tike mtX.

k-

ol

HarAnass

(w/3)k

jmli
Sticky Note
The k-cut problem becomes: cut k-1 edges, to minimize the cut between the isolated leaf components and the rest of the graph.

Exact nlt®/ 3)K

Motrix Malti p lication ,
_n\orups tree QQEIIIJ
Eagj OS2 ¢ (D (k'l) —'('QGPUJh TCe e Rulud'itm 1o (k-g-(u‘p.
: —> k- ique-tke mbx.mult,

@ T connects \/-1't n o Star
| S Hardnass n/3k

jmli
Sticky Note
now, drawing inspiration from the hardness reduction to k-clique, we can write the k-cut solution as the sum of the component boundaries, the blue edges, minus the edges between components, the red edges.

Modtrix Madtip lication
. @ (k-1)—cespects teee
Q) T connects \’r n o ﬁ_ﬁ

Easy cnse

_n\orupls tree (“kwj
Reduction to (K-1)-resp.

sl djqul—lfke. mbx.mult,

HarA ness n(u/g)k

S

(negetive)

jmli
Sticky Note
and now, let's set up a k-clique instance, where the nodes are the leaf components. This instance will actually be weighted, with both node and edge weights, so we're actually solving a min weight k-clique instance. We want to set the weights so that this term corresponds to the node weights, and this term to the edge weights. This can be done by...

Motrix Maltip licaton g e
. -1)— tce e eduction to (K-1)-resp.
E@Sj o O (k l) reg‘w:h r-e —> k- ique-Ike mh(.mu.l:

¥
@T oond’s \/; n o Star S "IN

ﬂm*s uw%ﬂu oF a certaun k-(ﬂqw_, (N.adﬁvc.) . 2
'U““Q"“h\"—*d gmf"‘: pods Lt glts w(SV;’)G[n‘]) G_Aﬁe, WOHS *W(EW'\N&)6[-n]

jmli
Sticky Note
setting each node weight to be the boundary, and an edge between two leaves to be the total weight of edges between the leaves.

Exack a(tt@/3K

Moatrix 19 licad

atr Multip ON ot (“HFJ

Eagj OS2 0, (k'l) —'('QGPLLh Tcee Reduction o (k-1)-resp.
: —> k- ique-Ike mbx.mult,

QT connechs V¥ a & STar
_,. ‘ i Harsknass n*/¥K

Y uQ‘DHS ' of & certaun k"d’dq% (N-aﬂ*‘“-)

| W\ yex '
.Unwo?\v\‘\‘d aaph node. Wg\ﬁsﬁ (Vi) € [n‘]) adge weghts - W(EW?N:*)6['"21

Can Solue noda+odae wedeted k-cliqu integer wieights in [-w) W], in oW+ n{3)%)

jmli
Sticky Note
Now, on real edge weights, no non-trivial k-clique algorithm is known. But if the weights are integers bounded by poly n, this can be solved faster, in k-clique time.

jmli
Sticky Note
3 MIN

k""'l - (&S tin tree Exact n{lt®/3)K
_n\orupfs tree ad:'irj
Redumction o (k-g-rcrp.

(w/3)k

Medum cose: ° (k-1) —respects Tre2, sHll vant N
—> k- ique-lke mbxmudt,

HarAnass (273K

jmli
Sticky Note
Now suppose we have a (k-1)-respected tree, but it's no longer a star.

g -)_ 25 : : Exact {tW/3)K
k l rc d'ﬂ .rrce' _n\orupls tree (aﬁklrj
(w/3)k Reduction to (K-1)-resp.
~> k- ique-like mbx.mult,

\"\Ulium cosei (k-1) —respects Tce2, SHll vant L

K-cuk s cok (k-1) 2sges o5 ree 4+ minimize k- 10 G Harskrass n®/¥K
of the K connected componants

jmli
Sticky Note
Again, here's a picture of our problem: cut k-1 edges to...

g e)_ EE - : Exact {tW/3)K
k ' rc d'“ 'rrce' _n\orupls tree (aﬁklrj
(w/3)K Reduction to (K-1)-resp.
—> k- ique-like mbx.mult,

N\Ulium cosei ° (k-1) —cespects Tee2, SHll want L

K—C»j(l cuk (K-'l') .Ulﬂjﬂ-S 0‘\.' tree +o minimize Ny n IDG . n(_w/3)k
of the K connected componants

jmli
Sticky Note
minimize the edges between the k components

g -)""f EE . : Exact n{t®/3)k
k | 6 d'ﬂ +rcc —nmmp's tree fo‘dﬁ'J
(w/3)K Reduction o (K-1)-resp.
—> k-djqu-‘fke mibx.mult,

N\Ulium cose: ' (k-v) —(espects Teee, sHll want L
K"OJ“ CuX (K"l.) !Jl‘j‘-s ot free 4w mnIMmize k—cuh 106 (w/Dk
of the K conected componants Hardress 0™
Sﬁ‘\'a(v,s): best way b dobT parent edse »
oF v, 0&15“3 Wivh (5-1) Ulje,g n ~ 0
Vs subtree (s£k—) Tt

Y

DO

jmli
Sticky Note
Our main idea is to combine the k-clique mtx-mult routine with dynamic programming on the tree. We define a state based on each component v and an integer s as follows: we must delete the parent edge of v, and conditioned on that, delete some s-1 edges in the subtree at v to minimize the cut formed by the s edges. For example,...

(k~1) —respecting tree Exack o(*/F
Thorup S tree packie
(W/S)k R._.ludfm 1o (k-g-(trpj.
—> k-djqut-lfka mbx.mult,

Medium case: ® (k-1) —cespects Tree, sHll vant
K—cuk cot (K1) ;_;laf.s oF tree o minimize k-cut 10 O
oF the K comectd Components i il
Stare (v, s): best way o deli preat 2dge
or v, odong With (5-1) Ulj"«? I 3
V'S subtree (s£k~) 7 g
O 0 O/v

15 &

jmli
Sticky Note
here, perhaps the best 3-cut under these restrictions is by cutting the parent edge and these two subtree edges, so this would be the value of State(v,2)

(k1) —respecting tree Exack e/
Thorup S tree packie
(W/S)k R._.ludfm 1o (k-g-ftrpj.
—> k-djqut-lfke mbx.mult,

MNedium case: ® (k-1) —cespects Tree, sHll vant
K=k : c.uk (k- U:laf.s o Tree 4o minimize k-t 10 G
of the K comectd Components i il
Stare (v, s): best way o delie preat 2dge
or v, olong Lith (5-1) Ulj"«? I 3
V'S subtree (s£k~) 7 i)
O 0 O/v

o

jmli
Sticky Note
Or it could be these two subtree edges...

_mom S tree &CE'
(w/3)K R._.ludfm\ 1o (k—g-rtrpj.
—> k-djqu-‘fke mibx.mult,

N\Ulium cose: (k'l) "'egﬂwh tTcee, sHll want L
K-cuk i cut (K-1) 24925 F tree +o minimize k-awdk 0 O
of the K connected componants " Harz ness a3k
S"'R+?.(V,S): best way b dobT paret edge
oF v, a&mﬂ W ivh (5-1) Ulje,g n 3
v's subtree (s£k-) O R St 2)
O 0 O/

DO

jmli
Sticky Note
or these two.

_mom '50 tree &Ck]"
(w/3)K R._.ludfm to (k—g-(t:pj.
—> k-djqu-‘fke mibx.mult,

N\Ulium cosei ° (k-1) —respects e, SHll want ")

K=k : g;)\‘ (k-1) 2d9es 5 tree 4o minimize k-awdk 0 O
fhe K comected wﬂqwg HarAness n(.u/3)k
Stade (v,5): best way T dalife parent 2dqe i

or v, olm W (s- '
9 Wivh (5-1) Uqu In
V'S subtree (s£k-) O R St 2)
O €y O/

Tatuition: Al V'S farch, hon
v's subtree IS .ll\o\ﬂ-ﬁlmdg‘d' nStan L &

O

jmli
Sticky Note
The intuition for deleting the parent edge is that after doing so, v's subtree is essentially an independent instance. In other words, what we do inside v's subtree, and what we do outside, are basically independent, because we've deleted v's parent edge, so we've deleted all the edges between the subtree and elsewhere, so these are now two disconnected instances. And the notion of independent instances is why the DP works.

Exact na"“/ 3)K
N\Ulium cose: ° (k-1) —cespechs e, sHll vant nJ(“’/S)K meai ;"‘::-Kicf:;)
—> k- ique-like mbxmudt,

ek cut (K-) edges of free to mnimize k-ad 10O
f the K conected Components Harsnass 079"
Shate (v, s): best way T A pored edge Shte(v,6)="
OF v, olmg with (s-1) 2Aaes In < |
| /s suvtree (K

Cotuition: IF AIL Vs areal, Thon 00 O

V's subtree IS I&Jﬂ‘ﬁlmdmd' (N STon (L)

Y

Compuling Stokelv,$) -

(k~1) —respecting tree

D

jmli
Sticky Note
So now how to we compute a state? Here, suppose we want to compute State(v,6), and let's suppose this is the best way to do it.

Exact na'l‘“/3)K
Medum cose: ® (k-1) —cespects Tee2, shill vant V3K ml?ai m:-gﬁg
—~> k- ique-like mbx.mult,

K=k cut (K1) ‘U[ﬂjﬂ—'i ot free fv e
(ntmiz k_ad- ;
0“- ’H\.ﬂ. K @“Md Cﬂ“?ﬁhﬂ_ﬂfg Ny ‘06 HarAAness n(ujg)k
Chabe(v,3): best way b Wb porest e) Shabe(v/6) .
e(V,0)= .

(k~1) —respecting tree

£ &
0? v, olong w'llrkf-l) Uljf-«'i " ~< 0
- /s subtree (SEKY
Tatwiton: nlc de ke V'S.fal‘f»nT, han efafol®
V'S Subtree IS ll\alﬂfxmdg,,d inS‘\-wncn, \
Compuking SHokelv,$) : O
. fous ON Wnoimals MY g

jmli
Sticky Note
Let's only consider the maximal edges that are cut in this subtree. So these are the edges with no ancestor edge in the subtree also cut.

Exacr ﬂa'l‘“/3)K
Medum case: © (k-0)—cospeets Heee, SHIl vant n (W/3)K m'?ai ngﬁg
—> k- ique-like mbxmudt,

K._OJ: C.uk (K-l.) W‘S o‘F' ﬂee to MminImi
nmize K-
0“- .H\g‘ K unm&l CMQWR & |06 Ha A ness n(_U/:s’)k
Stote (v)s): best way A3 debfD porest 2dge g () Stake(v/€) 3
7 DA™ 5

(k~1) —respecting Tree

De:
ofF V ih (s- | >
‘ A o&ma Wivh (5-1) Uljzs In)&c& ~
| V'S subtree (ka"") E State (W
Iﬂ'\'u.t'ﬁon: I'F O\LQIIL VIS fWT, ‘Hf\ﬂll\ U » O @ e(“/3)
V's subtree IS .ll\alﬂaptmdg,;d' nStance \
Compuking SHokelv,s) O
. foms on avimal S g% -

V£ opch W ode (9R) with wda weght Stoke (u, 2)

jmli
Sticky Note
Now, in this case, these two edges are captured by State(u,2), and these by State(u',3), so we don't have to worry about the non-maximal edges. Now as before, we want to make a weighted k-clique instance, but this time, the nodes are all (u,l) tuples, weighted by their DP State.

Exact olltw/3K
T\r\om S tree GCEIF
N\d{um sz Y (k'l) —-respwh Tcee, S""((want rL(w/:s')K Rul.udfmh (k-g-(u‘;.
K-cuk: cot (K1) gdges of free fo mnimize k-ad 10 O —> k-llique-ke /m\'x.mult
of the K connected compoments HarAnass n™ vk

S""“"?-(\/,S): best W oy T do s pareni !u\ﬂl A SWE(V,G)z?
W (-t n Sy
or v, olong w’rk(s)uljas | 0'.

fs suvtree (S£KY
Tatuition: F Al VlS faf‘bnT, Hhan
U's subtree 1S tndependagt nStance
Compuking SHokelv,s))
nal A

. focns on "o |
o for aach w, L wde (u,l) with ede weght Stake(u, 2) ~
+ Edge W ergWh betwean (W), (J/fl):-u(EITqJTU])

(k~1) —respecting Tree

DO

jmli
Sticky Note
This time, the edge weights are the weights of edges between subtrees, negated. Again, this is to deal with double-counting.

Exact olltw/3)K

T\nomp's tree fad{w,

N\d{um sz Y (k’l) —-(‘EGpLd"' Tcee, S'H(want rL(w/.'s’)K Reduction to (K-1)-resp.

ok cut (k) 2dges of Aree to minimize kot in G > ity St
of The K Conaected cmqmnk arAness VN

S"'&"'?-(\/,S): best W o T do e parui !u\ﬂl 2 SWE(V,G)Z?
or V . &Qﬁma Wivh (5-1) Uljf«s n 3 x&@“

V'S subtree (s£k-)

Tatwition: F ddiu V's parent hon ‘
J's subtree 1S ndependodt nStance

(k~1) —respecting tree

DO

Compulting SHokelV,$) u
aal ehges, Suppose [Mty

. oS On "o '

o for oach W, ode (0, 2) with ned wenghit Stoke (u, 2)

. Edae Weighk betwan (L), (v, 0 ~w(ELTu, V1) {u;s are. incomparable
2

e Find min nodeteda wd\%\d' - diqu (“;,ll)---(ur,lr) ¥, h=s8-4 F

jmli
Sticky Note
Finally, we want a special type of min k-clique: the nodes u_i should be incomparable, this means none should be an ancestor of another, and also, the sum of l_i should be exactly s-1. It turns out that this can also be solved in k-clique time.

jmli
Sticky Note
5 MIN

_WDWP'S' tree qGCH'J
— R'_had‘iﬂ"\ to (k-1 - (esp.
k- ique-like mbx.mult,

HarA ness n(u/g)k

—%_RTL‘:‘_P'S tree fﬂﬁk]l')
. ‘ ion to (k-u)-resp.
Thm' Given o (-ak“')'_ PLSM"‘:] free, can comp ule k- Jique-tike m\'x.mr:!:

K\Q\(_k mamw trees st One of thom (s HarAness (/3K
A- resgectng W, .

o po%(") {rees, one o w\\'ndn <« (Qk-2-—resyp.
S £ n O drees, one oF which D (k-1)-resp.

k- ique-like mbxmult,

A- resgectng, W, p.

. po%(") trees, one £ Widh s (2k-2)- resy.
5 £ n** draes, ona oF which B (k-1)-resg.
(/DK time per tee, FE W)k +0W L 1)

Exact {tW/3)k
_n\oruprs tree fadfw]
Reduction to (K-1)-resp.

(14 £)—apprex k-cuk

] ~clique-like mbxmelt,
T (K..l)--pes(?ac,.;q~n3 tree, can {-\—m.a, k- llique e/g)k
Mm:

(W
(4¢)-apx K- £(k,€) pc{’ﬂ () (PeT) HarAness n

e

jmli
Sticky Note
I'll briefly outline our (1+eps)-apx k-cut result, which I think is the second-most interesting. This comes from our following theorem: if we have a (k-1)-respected tree, we can actually compute a (1+eps)-apx in FPT time.

Exact {ltW/3)K
_n\oruprs tree fadﬁl']
Reduction to (K-1)-resp.

Thm: Given (k-0D—respecting treg, can Find k- cllique-like mbxmult,
(W/3)k

(4¢)-apx K- £(k,£) 9635 () (PeT) HarAness n

Q.

(14 £)—agprox k-cuk

s impossible 1n FPT (W [4]=hadd)

jmli
Sticky Note
And this is best possible in FPT time, by a similar reduction from k-clique

(14 £)—apprex K- cuk

Thorup's tree fack'i-;
Reduction to (K-1)-resp.
k- ique-like mbx.mult,

HarA ness n(_u/g)k

T\nomp's tree f&(fl")
Reduction to (K-1)-resp.

k- ique-like mbx.mult,

HarA ness ﬂ('wjg)k

T\\DWP'S tree ﬁﬂck-l"]
Reduction to (K-1)-resp.
k-djquﬂ.—lf\(e mbx.mult,

HarA ness n(_u/g)k

Thorup's tree packiey
Reduction o (k-g-rcrp.

k- Jique-like mbx.mult,
(W/3)k

o FasTe CﬁW\‘f’if“""l_o'r:"c*Jl exoct 0\%0?

EXQC\' ﬂ(lt“/ 3)k
Thorup's free packin
Reduction 1o (k—g-rcrp.

k- ique-lke mbxmult,
(W/3)k

0 F(}LSJI'U_ Cﬁ\“blf\ﬂd_or](}ﬂ -QXCAC.'_ 0\9.60?

s [(DLL‘lg, \anublis\neo\] ‘F(\L) n\‘qo‘k Tima
-___—.-> .P(l() n[,t\‘\k Qx‘|'reﬁ‘&0~ :H: M N \("O.JS

o« | pwer bond n,k (OOW\\Oif\“\er;a*Q K-d/(qwb)

EXQC\' n(lt“/ 3)k
Thorup's ree pack
Reduction to (K-1)-resp.

k- ique-lke mbxmult,
(Ww/3)k

Open problems

\aak o
. G6LL (8 \anubl{s\neo\] £(K) n +Hima. |
{ | -___—.-> .P(l() nl‘%k Qx‘|'re,mp~ H min K~ cudks

o« | pwer pound n,k (OOW\\O“\“\JWF;@Q K_d".qwl’)

9 B.UH'U“ Q,FFF'DX‘I rV\aU\' FUV\? |
c(14L)—apx N Sk, ¢) ()o%Ch) Fime?

