Faster minimum k-cut
of a simple graph

Jason LI
STOC 2019
November 11, 2019

Prior Work
CDGLASQL‘\WHo\{'—'HOCL\\oMm \0[0[(-{ OCVL(

7 Al
B = Py 1 41Y O(n
K artaet" S‘i‘eln. . n';)_k-l) _h ol GLftQ(m\NS’k'IQ

N OLS) +ime Actormimshic
l<-ﬂ> e andornized

L

Prior Work
GC{LASCJ/‘WFIO\%"'HOC\"\»DMM qu(-{ O(nfifl-'o(l))\ﬂz) ‘hma dl_tﬁ.fm' - al:
- s
OCVLQU(_“) Hime randonized

KOLF%Q(‘- Stein l 1Y
O(m n,ﬁk-l) A1 e Ao minstic

—r\'\oru\o ‘200K

Che kur o)

- a:r et ol 2018 O(mr\a‘(3) 4 e Adfgr mastic

upta, \,G’G) _.. D-Olq; O ((\.qQI-kn(ﬂ)\(:

Same aufhe o) ot conleee
s, 2OIE Ou((3=/3+0K) fime determinishe

-rhTS Uork Ok(n(l-}o(n)k) -Hr\:—:ﬂ‘?r w&g\;‘:‘?:e;\@(l)

for Simple gaphs

(Liﬂwf.;jln“'ecl/ o muj{ ;-@5;{333)

Prior Work
GGLASQ{/‘WFIO\%"' H och o o CECE O(nf'/lﬂo(l))Kz) “+Hme datrministic

\(aﬁﬁe(‘-Serm, 1 41Y
6(\0/\ nﬁk-l) A1 e Ao minstic

—r\f\orup ‘200K
Ono.ku.n -@i 0\9\ lo\%’ O(W\ ﬂ;k-g) *‘\‘IW\Q g{ftq(mml&hc
ta 019 o -
Gu()) \,ee) L. 20l Ok(n.QHQH ())k) Lo aundomized
S ame MTM"S, Jol& O\g(“@wBJ‘“LM\‘) Fime Aetermi nishe,
| teaor weights < n oM

for Simple gaphs

LOLN-Q.I' %MG\ AS \\Ckrd QS \Q—dic‘uﬂl
_Q,(V\(" oK) hme Combinatoriad

Prior Wor K
O(VL(=ol)) kz) +ime delaymimshe

GAdschm: At —H ochbaunt 1444

—r\'\oru\\o ‘200%
Chekun <t all . 20\€ 0
| k-3
Guph ' 1 O(W\ﬂ) 4 one At minist
) G’Q) L. g—OlQ‘ Ok(r‘g\.c‘9| '(‘n(\.))k) * o
e roundomized

O (D.w/3—{-=(ﬂ '
k((“(\k) Jf\:r\.ﬂ. Aoterm nishe,
0. (nf"+°tVk integar weigts € A%
k\n i) ‘\";:Dmn. rardomized
1= For simple grphs

U i
(nw< jln"rfal} o mu.ﬂ‘h“'ﬁdﬁes)

o oound: QS hacd oS k- ique : ﬂ(n(w/z-atll)k) %
(n(l- a(l)) k) i brzu)
() o Combinatoriad

Same aufhors, LOIE
This work:

Algorithm Outline

Kawarabayashi-Thorup
_— Sparsification
C7 * MN\:= Yl/}|< vertices

* Preserves min k-cut
W\‘\ﬂ \(-Cu-* — ?\k (if it's nontrivial)

Algorithm Outline

Kawarabayashi-Thorup
_— Sparsification
C7 * M\:= Yl/}|< vertices

* Preserves min k-cut
Tree packing: @
'ﬁ" trees s.t.

(if it's nontrivial)
exists a tree

Intersecting
OPT k-1 times

Algorithm Outline

Kawarabayashi-Thorup
_— Sparsification
(:7 * M\:= Yl/'A|< vertices

* Preserves min k-cut
(if it's nontrivial)

Solve tree problem:
Tree packing: @ \ cut best k-1 edges
X trees s.t. o color-coding (this talk)
eX|sts 3 tree » heavy light decomposition

—o(k)
intersecting " gl NS

OPT k-1 times

Algorithm Outline

Kawarabayashi-Thorup
_— @ Sparsification
-ertices
* Préserves min k-cut
(if it's nontrivial)

Solve tree problem:

o trous st o color-coding (this talk)

exists a tree [T (e e hesz -Ii.ght decomposition
intersecting ("5(;) A R AN @ me

OPT k-1 times

Algorithm Outline

Kawara bayashi-Thorup
—
m ertices

'eserves min k-cut
(if it's nontrivial)

Solve tree problem:
1: cut best k-1 edges
n: trees s.t. ' A-G@ this talk)

eXIsts a tree O _ (\+om)k heavy- g t decomposition
Intersecting) ?\k hm.e. " @ Ime

OPT k-1 times

Vertex Sparsification

- [Kawarabayashi-Thorup’l5]
For any simple graph G, can contract edges into

multigraph G s.t.

Vertex Sparsification

- [Kawarabayashi-Thorup’l5]
For any simple graph G, can contract edges into

multigraph G s.1.
 no nontrivial mincut has any edges contracted

. number of vertices is O (n/2)

Vertex Sparsification

- [Kawarabayashi-Thorup’l5]
For any simple graph G, can contract edges into

multigraph G s.1.
 no nontrivial mincut has any edges contracted

(3 at least two vertices on each side

21 22

. number of vertices is O (*/2)

Vertex Sparsification

- [Kawarabayashi-Thorup’l5]
For any simple graph G, can contract edges into

multigraph G s.1.
 no nontrivial mincut has any edges contracted

L atleast two vertices on each side

21 22

. number of vertices is O (*/2)

Vertex Sparsification

- [Kawarabayashi-Thorup’l5]
For any simple graph G, can contract edges into

multigraph G s.1.
 no nontrivial mincut has any edges contracted

L atleast two vertices on each side

21 22

. number of vertices is O (n/2)

Vertex Sparsification

- [Kawarabayashi-Thorup’l5]
For any simple graph G, can contract edges into

multigraph G s.1.
 no nontrivial mincut has any edges contracted

L atleast two vertices on each side

21 22

. number of vertices is O (n/2)

Vertex Sparsification

- [Kawarabayashi-Thorup’l5]
For any simple graph G, can contract edges into

multigraph G s.1.
» no nontrivial mincut has any edges contracted

L atleast two vertices on each side

21 22

. number of vertices is O (*/2)
- Used for deterministic mincut: sparsify into m=0(™/a)
and run Am=0(m) algorithm

Vertex Sparsification

- [Kawarabayashi-Thorup’l5]
For any simple graph G, can contract edges into
multigraph G s.1.
 no nontrivial mincut has any edges contracted

L atleast two vertices on each side

21 22

. number of vertices is O (n/2)
- Used for deterministic mincut: sparsify into m=0(™/a)
and run Am=0(m) algorithm

Trivial mincuts easy

Vertex Sparsification

- [Kawarabayashi-Thorup’15] [This work]

For any simple graph G can contract edges into

i k(h*)" 2 ‘.:.-‘Hk) %
mUItlgraph G S. t “ k Uhi (m“ l<(regulzar|ty)

* NO hontrivial I;u.nem' has any edges contracted

T atleast two vertices on each side
23
* number of vertices is Ok(ft/%)mm ook

» Used for de%awnlsﬂt-le mireat: sparsify into M(”?"'fi)
and run Am=0+tm-algorithm n=0(%)

[A= a0

Trivial mincutsez

Vertex Sparsification

- [Kawarabayashi-Thorup’15] [This work]

For any simple graph G, can contract edges into
. — w't“\ (min k'(n*)m N:‘.:.- ‘F(k)'%,
mUItlgraph G S.t.m-m k'U‘i (regularity)

» no nontrivial minedat has any edges contracted
T atleast two vertices on each side

~ 27 22
- number of vertices is Ot /) . .t
¢ o g8 o e s 4 _—
» Used for aetermimstie mineat: sparsify into m;et""fi)
and run -Am=0-twi—algorithm n=0(%)

R0 =)

Trivial mim&k=ct 2dSY (guess one vertex and recurse)

Solving on Sparsified Graph

i ° K _k+ o(k)
Goal: solve intime A'n

Solving on Sparsified Graph

. . K _k+ o(k)
Goal: solve intime A'n

Tree Packing [Thorup]:
Given weighted graph, exists collection Tof poly(n) spanning

trees of G s.t. for any min k-cut S, S, ., %<V

exists tree Te T s.t. |E[S,5, Sl £ 2k-2

Solving on Sparsified Graph

. . K _k+ o(k)
Goal: solve intime A'n

Tree Packing [Thorup]:
Given weighted graph, exists collection Tof poly(n) spanning

trees of G s.t. for any min k-cut §,S;, .., %<V @
exists tree Te T s.t. |E5,5,., Sl £ k-2

Solving on Sparsified Graph

. . K k+ ok
Goal: solve intime A n

Tree Packing [Thorup]: [GLL'\8]: A
Given weighted graph, exists collection Tof p_oly-(-n') spanning

trees of G s.t. for any min k-cut S., S,, ,S..:S @

exists tree Te7 s.t. \E 1S,,5,, ,S,]

Solving on Sparsified Graph

. . K k+ ok
Goal: solve intime A n

Tree Packing [Thorup]: [6LL'): o~
Given weighted graph, exists collection Tof p_oly-('n') spanning

trees of G s.t. for any min k-cut S,,S;, .., %<V @

exists tree Te T st. |E.[S,5,.., Sl £ D\:\:‘I
Suffices to solve problem: given (tight) tree T, delete best k-1
edges to form smallest k-cut

Solving on Sparsified Graph

. . K k+ ok
Goal: solve intime A n

Tree Packing [Thorup]: [GLL'): o~
Given weighted graph, exists collection Tof p_oly-('n') spanning

trees of G s.t. for any min k-cut S, S, ., %<V @

exists tree Te T sit. |E.[S,5,.., Sl £ D\:\:‘I
Suffices to solve problem: given (tight) tree T, delete best k-1
edges to form smallest k-cut

Solving on Sparsified Graph

. . K k+ ok
Goal: solve intime A n

Tree Packing [Thorup]: [GLL'\8]: o~
Given weighted graph, exists collection Tof p_obr(-n') spanning

trees of G s.t. for any min k-cut S., S, - ,SKSV@
exists tree Te 7T s.t. |E,[S,5;,., 5l £

Suffices to solve problem: given (tlght) tree T, delete best k-1
edges to form smallest k-cut

Solving on Sparsified Graph

. . K k+ ok
Goal: solve intime A n

Tree Packing [Thorup]: [GLL'\8]: o~
Given weighted graph, exists collection Tof p_obr(-n') spanning

trees of G s.t. for any min k-cut S., S, - ,SKSV@
exists tree Te T s.t. £S5, 5l £

Suffices to solve problem: given (tlght) tree T, delete best k-1
edges to form smallest k-cut

Solving on Sparsified Graph

. . K k+ ok
Goal: solve intime A n

Tree Packing [Thorup]: [GLL'\8]: o~
Given weighted graph, exists collection Tof p_obr(-n') spanning

trees of G s.t. for any min k-cut S., N, = V@

exists tree Te T s.t. |E[S,S:,.., Sl £

Suffices to solve problem: given (tlght) tree T, delete best k-1
edges to form smallest k-cut

Solving on Sparsified Graph

. . K k+ ok
Goal: solve intime A n

Tree Packing [Thorup]: [6LL'\8]: ~
Given weighted graph, exists collection Tof p_obr(-n') spanning

trees of G s.t. for any min k-cut S., N, = V@

exists tree Te T s.t. |E[S,S;,.., Sl £

Suffices to solve problem: given (tlght) tree T, delete best k-1
edges to form smallest k-cut

Solving on Sparsified Graph

. . K k+ ok
Goal: solve intime A n

Tree Packing [Thorup]: [6LL'\8]: o~
Given weighted graph, exists collection Tof p_obr(-n') spanning

trees of G s.t. for any min k-cut S., Sz, L%EV @

exists tree Te T st |E;[5,S,., 5l £
Suffices to solve problem: given (tlght) tree T, delete best k-1
edges to form smallest k-cut

Time O(Aen"™)

Solving on Sparsified Graph

. . K k+ ok
Goal: solve intime A n

Tree Packing [Thorup]: [6LL'§): o~
Given weighted graph, exists collection Tof p_obr(-n') spanning

trees of G s.t. for any min k-cut S., N, -y V@

exists tree Te T s.t. |ELS,S;,.., Sl £

Suffices to solve problem: given (tlght) tree T, delete best k-1
edges to form smallest k-cut

Restricted Problem to Solve

given (tight) tree T, delete best k-1 edges to form smallest k-cut
r~rak o(k)
Time 0(//\kﬂ')

Restricted Problem to Solve

given (tight) tree T, delete best k-1 edges to form smallest k-cut
~rA Kk o(k) 1 _
Time O(IAkn')

This talk: when T is a “spider”

Restricted Problem to Solve

given (tight) tree T, delete best k-1 edges to form smallest k-cut
r~7A Kk oK) 1
Time O(Acn)

This talk: when T is a “spider”
* OPT cuts at most one edge per branch

Restricted Problem to Solve

given (tight) tree T, delete best k-1 edges to form smallest k-cut
r~7a K o(Kk)
Time O(’Akﬂ-) ;

This talk: when T is a “spider” 1T N
* OPT cuts at most one edge per branch {4/ “¥}

Restricted Problem to Solve
given (tight) tree T, delete best k-1 edges to form smallest k-cut
r~rak oK)

Time O(Acn)

This talk: when T is a “spider”
* OPT cuts at most one edge per branch

Restricted Problem to Solve

given (tight) tree T, delete best k-1 edges to form smallest k-cut
~sa Kk o(k)
Time O(Acn)
This talk: when T is a “spider”
* OPT cuts at most one edge per branch %

OFind which branches to cut: (", ")choices cut these

naively 2 bronches

Restricted Problem to Solve

given (tight) tree T, delete best k-1 edges to form smallest k-cut
Ak olk) 1 (cest)
Time O(’Akﬂ-) - | Sy

This talk: when T is a “spider”
* OPT cuts at most one edge per branch %

t \)
branches . Sum O-
k-| Ch0|CeS&,‘- eac\h double-connt

naively et > "

OFind which branches to cut:
@Deal with double-counting

Restricted Problem to Solve

given (tight) tree T, delete best k-1 edges to form smallest k-cut

K o T o (e
Time 6(Il\kﬂ- (k)) —] , S)]

This talk: when T is a “spider”
* OPT cuts at most one edge per branch %

" ta\
OFind which branches to cut: C' :_'f | ’)choicesscé*rmewi\ double-connt

: . ' 51
@Deal with double-counting et £

(2) Extreme case: no edges between
different branches

Restricted Problem to Solve

given (tight) tree T, delete best k-1 edges to form smallest k-cut
~ K o(k) t (Cest)
Time O(Acn) L 8% e A

This talk: when T is a “spider” 1
* OPT cuts at most one edge per branch %

= o S o L
OFind which branches to cut: :_'f |)chmces?éfrmm,;\ Jouble—count

@Deal with double-counting nively Pt

(2) Extreme case: no edges between
different branches

)

For each branch, take best cut: take best k-1 overall

ldentifying the Branches

Other extreme: suppose many edges between OPT's
branches

ldentifying the Branches

Other extreme: suppose many edges between OPT's
branches

ldea: color-code a spanning tree
connecting these branches

ldentifying the Branches

Other extreme: suppose many edges between OPT's
branches '

ldea: color-code a spanning tree
connecting these branches

ldentifying the Branches

Other extreme: suppose many edges between OPT's
branches '

ldea: color-code a spanning tree
connecting these branches

Color each edge green w.p. p and
red w.p. 1-p
Want: fixed spanning tree all green

ldentifying the Branches

Other extreme: suppose many edges between OPT's
branches 1

ldea: color-code a spanning tree G‘i 1
connecting these branches N

)
Color each edge green w.p. p and
red w.p. 1-p

Want: fixed spanning tree all green
For each of OPT's branches, remaining boundary

edges red

|dentifying the Branches

Other extreme: suppose many edges between OPT's
branches
ldea: color-code a spanning tree

connecting these branches
Color each edge green w.p. p and

’4llt 0 '
red w.p. 1-p

| ’//'
Want: fixed spanning tree all green

For each of OPT's branches, remaining boundary
edges red

|dentifying the Branches
Other extreme: suppose many edges between OPT's

branches f AN

ldea: color-code a spanning tree p‘.'t
|

connecting these branches)

Color each edge green w.p. p and
red w.p. 1-p

Want: fixed spanning tree all green
For each of OPT's branches, remaining boundary

edges red

|dentifying the Branches
Other extreme: suppose many edges between OPT's

branches f AN

ldea: color-code a spanning tree p‘.'t
|

connecting these branches)

Color each edge green w.p. p and
red w.p. 1-p

Want: fixed spanning tree all green
For each of OPT's branches, remaining boundary

edges red

|dentifying the Branches
Other extreme: suppose many edges between OPT's

branches (f

|ldea: color-code a spanning tree p‘." | ,
connecting these branches ’0 d 5
Color each edge green w.p. p and \//

red w.p. 1-p

Want: fixed spanning tree all green
For each of OPT's branches, remaining boundary

edges red

|dentifying the Branches
Other extreme: suppose many edges between OPT's

branches — /®’
ldea: color-code a spanning tree g;((‘;"rm‘ :;)
A |" ‘

connecting these branches ‘,

Color each edge green w.p. p and /

red W.p. 1-p v (WLOG: every edge cut A
. : Otherwise OPT can't pick
Wa nt: flxed Spanr“ng tl'ee a” g reen that edge, so contract)

For each of OPT's branches, remaining boundary

edgesred €A, per branch = < kg otal

ldentifying the Branches

Other extreme: suppose many edges between OPT's
branches '

ldea: color-code a spanning tree
connecting these branches

Want: fixed spanning tree all green
For each of OPT's branches, remaining boundary

edgesred €A, per branch = < kg fotal

Contract each branch; OPT’s branches is one connected component

ldentifying the Branches

Other extreme: suppose many edges between OPT's
branches '

ldea: color-code a spanning tree
connecting these branches

Want: fixed spanning tree all green
For each of OPT's branches, remaining boundary

edgesred €A, per branch = < kg fotal

Contract each branch; OPT’s branches is one connected component

ldentifying the Branches

Other extreme: suppose many edges between OPT's
branches

ldea: color-code a spanning tree
connecting these branches

Want: fixed spanning tree all green
For each of OPT's branches, remaining boundary

edgesred €A per branch = < kg fotal

Contract each branch; OPT’s branches is one connected component

|dentifying the Branches
gje

Other extre
bra
ldee
con

Color eachw__ ~ sand
red w.p. 1-p

Want: fixed spanning tree)all green @ S 9 x
For eac s branches, remaining boundary
edgesred €A pel banch = < k)¢ totad

Contract each branch; OPT’s branches is one connected component

any edges between OPT's

Highlight small (size k)
structure

General Trees
Heavy-light decomposition into branches, color-code red/blue

General Trees
Heavy-light decomposition into branches, color-code red/blue

/\\
AT

General Trees
Heavy-light decomposition into branches, color-code red/blue

/ OPT » Each branch containing an
\ edge cut by OPT is blue
g\\ / / e Their ancestor branches are red

® \ * O(log n) anc. branches per edge
(by HLD)

General Trees
Heavy-light decomposition into branches, color-code red/blue

/ OPT » Each branch containing an
\ edge cut by OPT is blue
& /® / e Their ancestor branches are red

*» O(log n) anc. branches per edge
* Color blue w.p. 1/logn: (by HLD)

(lo; n)k(‘ - ‘-;f‘}_"-)o“ E h): lo;“n e‘°(")

General Trees
Heavy-light decomposition into branches, color-code red/blue

/ OPT *» Each branch containing an
\ edge cut by OPT is blue
& /® / e Their ancestor branches are red

* O(log n) anc. branches per edge
* Color blue w.p. 1/logn: (by H1D)

0a h) -
(lo; n)k(|- ‘_;:;_"_)O(kl J :?:?'(:(k)

General Trees
Heavy-light decomposition into branches, color-code red/blue

» Each branch containing an

edge cut by OPT is blue
e Their ancestor branches are red
* O(log n) anc. branches per edge
* Color blue w.p. 1/logn: (by HLD)

0a h) -
(lo; n)k(|- ‘_;:;_"_)O(kl J :?:i?(k)

General Trees
Heavy-light decomposition into branches, color-code red/blue

» Each branch containing an

edge cut by OPT is blue
e Their ancestor branches are red
* O(log n) anc. branches per edge
* Color blue w.p. 1/logn: (by HLD)

pa h) -
(|a; n)k(‘ - ‘:;_n_)om J :?:i::m

e Assumes OPT e)dges
“incomparable’

General Trees
Heavy-light decomposition into branches, color-code red/blue

» Each branch containing an

edge cut by OPT is blue
e Their ancestor branches are red
* O(log n) anc. branches per edge
* Color blue w.p. 1/logn: (by HLD)

(| -0(k)

0q h)
|D;ﬂ)k(‘_{;;_ﬂ-)0(kljh:|:PT(k)

e Assumes OPT e)dges
“incomparable’

Reduce to incomparable: Dynamic program on subtrees [GLL18]

Future directions?

Faster min k-cut on a weighted graph?

Future directions?

Faster min k-cut on a weighted grapho i
O (log >qn
[Gupta Lee L] min k-cut in time n*2 Oy

Future directions?

Faster min k-cut on a weighted graph’?
|Gupta Lee L] min k-cut in time n #) O((eloge?
e The Karger-Stein algorithm
outputs any fixed min k-cut

]
with probability n* kg kg
[Improve tom N 2 KJ

Future directions?

Faster min k-cut on a weighted graph’?

|Gupta Lee L] min k-cut in time n #) O((eloge?

(TCS+talk, Nov. 20) o The Karger-Stein algorithm
outputs any fixed min k-cut

]
with probability n* kg Ohgem)y
[Impmve tom N 2 KJ

Future directions?

Faster min k-cut on a weighted graph’?
[Gupta Lee L] min k-cut in time n*Q
(TCS+talk, Nov. 20) o The Karger-Stein algorithm

outputs any fixed min k-cut
O(|03|03n)2

(|03 lbj I\)

with probability n*

Deterministic ﬁk time?

