Faster minimum k-cut of a simple graph

Jason Li STOC 2019 November 11, 2019

Introduction

minimum k-cut: delete min weight edges to cut graph into $\geq k$ connected components

Setting: exact algorithm, k constant

Goldschmidt-Hochbaum 1994: $O(n^{(1/2-o(1))k^2})$ time deterministic Karger-Stein 1994: $O(n^{2(k-1)})$ time randomized $O(mn^{2k-1})$ time deterministic

Thorup 2008: Chekuri et al. 2018: O(mn^{2k-3}) time deterministic

Goldschmidt-Hochbaum 1994:

Karger-Stein 1994:

Thorup 2008:

Chekuri et al. 2018:

Gupta, Lee, L. 2019:

Same authors, 2018.

This work:

O(n(1/2-o(1)) k2) time deterministic O(n2(k-1)) time randomized O(mn2k-2) time déterministic O(mn2k-3) time déterministic

 $O_k(n^{(1.981 + o(1))k})$ time randomized $O_k(n^{(2\omega/3 + o(1))k})$ time deterministic, integer weights $\leq n^{O(1)}$ $O_k(n^{(1+o(1))k})$ time randomized for simple graphs

(unweighted, no multi-edges)

Goldschmidt-Hochbaum 1994:

Karger-Stein 1994:

Thorup 2008:

Chekuri et al. 2018:

Gupta, Lee, L. 2019:

Same authors, 2018.

This work:

O(n(1/2-o(1)) k2) time deterministic

O(n2(k-1)) time randomized

O(mn2k-2) time déterministic

O(mn2k-3) time déterministic

 $O_k(n^{(1.981 + o(1))k})$ time randomized $O_k(n^{(2\omega/3 + o(1))k})$ time deterministic, integer weights $\leq n^{O(1)}$ $O_k(n^{(1+o(1))k})$ time randomized for simple graphs

(unweighted, no multi-edges)

 $\Omega(n^{(U/3-o(i))k})$ time algebraic $\Omega(n^{(I-o(i))k})$ time combinatorial Lower bound: as hard as k-clique:

Goldschmidt-Hochbaum 1994: Karger-Stein 1994:

Thorup 2008:

Chekuri et al. 2018:

Gupta, Lee, L. 2019:

Same authors, 2018.

This work:

O(n(1/2-o(1)) k2) time deterministic

O(n2(k-1)) time randomized

O(mn2k-2) time déterninistic

O(mn2k-3) time déterministic

Ok(n(1.981 + o(1))k) time randomized

Ok(n(2w/3+o(1))k) time deterministic,

integer weights \le n o(1)

Ok(n(1+o(1))k) time randomized

Ok(n(1+o(1))k) time randomized

Combinatorial for simple graphs

(unweighted, no multi-edges)

 $\Omega(n^{(U/3-o(i))k})$ time algebraic $\Omega(n^{(I-o(i))k})$ time combinatorial Lower bound: as hard as k-clique:

Kawarabayashi-Thorup Sparsification

- η:= η/_{λκ} vertices
 Preserves min k-cut
- Preserves min k-cut (if it's nontrivial)

Kawarabayashi-Thorup Sparsification

- $\bar{\eta} := \eta/\chi_{k}$ vertices
- Preserves min k-cut (if it's nontrivial)

Tree packing:

n^k trees s.t.

exists a tree
intersecting

OPT k-1 times

Kawarabayashi-Thorup Sparsification

- $\bar{\eta} := \eta/\lambda_{k}$ vertices
- Preserves min k-cut (if it's nontrivial)

Tree packing:

\(\text{T}^k \) trees s.t.

exists a tree

intersecting

OPT k-1 times

Solve tree problem: cut best k-1 edges

- color-coding (this talk)
- heavy-light decomposition
- $-\lambda_k^k \overline{n}^{o(k)}$ time

Kawarabayashi-Thorup Sparsification

(if it's nontrivial)

Tree packing:

\(\text{T}^k \) trees s.t.

exists a tree

exists a tree intersecting
$$(\frac{n}{\lambda_k})^k \lambda_k^k n^{\circ (k)} = n^{(1+\circ (i))k}$$
OPT k-1 times

Solve tree problem: cut best k-1 edges

- color-coding (this talk)
- heavy-light decomposition

Kawarabayashi-Thorup Sparsification

Preserves min k-cut (if it's nontrivial)

Tree packing:

nk trees s.t.

exists a tree

(1+0(1))k intersecting $\left(\frac{n}{\lambda_k}\right)^k \lambda_k^k n^{\circ (k)} = n^k$ OPT k-1 times

Solve tree problem: cut best k-1 edges

- color-coding (this talk)
- heavy-light decomposition

- [Kawarabayashi-Thorup'15]
 For any simple graph G, can contract edges into multigraph G s.t.

- [Kawarabayashi-Thorup'15]
 - For any simple graph G, can contract edges into multigraph G s.t.
 - no nontrivial mincut has any edges contracted

- [Kawarabayashi-Thorup'15]

For any simple graph G, can contract edges into multigraph G s.t.

no nontrivial mincut has any edges contracted

at least two vertices on each side

- [Kawarabayashi-Thorup'15]

For any simple graph G, can contract edges into multigraph G s.t.

no nontrivial mincut has any edges contracted

at least two vertices on each side

- [Kawarabayashi-Thorup'15]

For any simple graph G, can contract edges into multigraph G s.t.

no nontrivial mincut has any edges contracted

at least two vertices on each side

- [Kawarabayashi-Thorup'15]

For any simple graph G, can contract edges into multigraph G s.t.

no nontrivial mincut has any edges contracted

at least two vertices on each side

- [Kawarabayashi-Thorup'15]
 - For any simple graph G, can contract edges into multigraph G s.t.
 - no nontrivial mincut has any edges contracted
 - at least two vertices on each side
 - number of vertices is $\widetilde{O}(1/\lambda)$
 - Used for deterministic mincut: sparsify into $\overline{m} = \widetilde{O}(m/\lambda)$ and run $\lambda \overline{m} = \widetilde{O}(m)$ algorithm

- [Kawarabayashi-Thorup'15]

For any simple graph G, can contract edges into multigraph G s.t.

- no nontrivial mincut has any edges contracted
 - at least two vertices on each side
- number of vertices is $\widetilde{O}(1/\lambda)$
- Used for deterministic mincut: sparsify into $\overline{m} = \widetilde{O}(m/\lambda)$ and run $\lambda \overline{m} = \widetilde{O}(m)$ algorithm

Trivial mincuts easy

- [Kawarabayashi-Thorup'15] [This work]
 - For any simple graph G_{λ} can contract edges into multigraph G s.t. with $(\min_{k \leftarrow \omega t}) =: \lambda_k \leq f(k) \cdot \lambda$, (regularity)

 no nontrivial mineut has any edges contracted
 - - at least two vertices on each side

 - number of vertices is O_k(ⁿ/λ)_{min k-ωt}
 Used for deterministic mincut: sparsify into m̄=ỡ(m/λ) and run $\frac{\lambda_{m}}{\lambda_{k}^{k}\bar{n}^{k+o(k)}} = n^{k+o(k)}$ algorithm

 Trivial mincuts easy

- [Kawarabayashi-Thorup'15] [This work]
 - For any simple graph G_{λ} can contract edges into multigraph G s.t. with $(\min_{k-\omega t})=: \lambda_k \leq f(k) \cdot \lambda$, (regularity)

 no nontrivial mineut has any edges contracted
 - - at least two vertices on each side

 - number of vertices is O_k(ⁿ/λ)_{min k-ωt}
 Used for deterministic mincut: sparsify into m̄=ỡ(m/λ) and run $\lambda_{m} = \widetilde{O}(m)$ algorithm $\lambda_{k}^{k} \overline{n}^{k+o(k)} = n^{k+o(k)}$ Trivial min κ -cuts easy (guess one vertex and recurse)

Goal: solve in time $\lambda^k n^{k+o(k)}$

Goal: solve in time $\lambda^k n^{k+o(k)}$

Tree Packing [Thorup]:

Given weighted graph, exists collection \mathcal{T} of poly(n) spanning trees of G s.t. for any min k-cut $S_1, S_2, ..., S_k \subseteq V$ $S_1, S_2, ..., S_k \subseteq V$ exists tree $T \in \mathcal{T}$ s.t. $|E_T[S_1, S_2, ..., S_k]| \leq 2k-2$

Goal: solve in time $\lambda^k n^{k+o(k)}$

Tree Packing [Thorup]:

Given weighted graph, exists collection \mathcal{T} of poly(n) spanning trees of G s.t. for any min k-cut $S_1, S_2, ..., S_k \subseteq V$ exists tree $T \in \mathcal{T}$ s.t. $|E_T[S_1, S_2, ..., S_k]| \leq 2k-2$

Goal: solve in time $\lambda^k n^{k+o(k)}$

Tree Packing [Thorup]: [GLL'18]:

Given weighted graph, exists collection \mathcal{T} of poly(n) spanning trees of G s.t. for any min k-cut $S_1, S_2, ..., S_k \subseteq V$ exists tree $T \in T$ s.t. $|E_T[S_1, S_2, ..., S_k]| \leq 2k - 2$

Goal: solve in time $\lambda^k n^{k+o(k)}$

Tree Packing [Thorup]: [GLL'\8]:

Given weighted graph, exists collection T of poly(m) spanning

trees of G s.t. for any min k-cut $S_1, S_2, ..., S_k \subseteq V$ exists tree $T \in \mathcal{T}$ s.t. $|E_T[S_1, S_2, ..., S_k]| \leq 2k - 2$

Goal: solve in time $\lambda^k n^{k+o(k)}$

Tree Packing [Thorup]: [GLL'18]:

Given weighted graph, exists collection \mathcal{T} of poly(π) spanning trees of G s.t. for any min k-cut $S_1, S_2, ..., S_k \subseteq V$ exists tree $T \in \mathcal{T}$ s.t. $|E_T[S_1, S_2, ..., S_k]| \leq 2k - 2$

Goal: solve in time $\lambda^k n^{k+o(k)}$

Tree Packing [Thorup]: [6LL'18]:

Given weighted graph, exists collection \mathcal{T} of poly(π) spanning trees of G s.t. for any min k-cut $S_1, S_2, ..., S_k \subseteq V$ exists tree $T \in \mathcal{T}$ s.t. $|E_T[S_1, S_2, ..., S_k]| \leq 2k - 2$

Goal: solve in time $\lambda^k n^{k+o(k)}$

Tree Packing [Thorup]: [6LL'18]:

Given weighted graph, exists collection \mathcal{T} of poly(π) spanning trees of G s.t. for any min k-cut $S_1, S_2, ..., S_k \subseteq V$ exists tree $T \in \mathcal{T}$ s.t. $|E_T[S_1, S_2, ..., S_k]| \leq 2k - 2$

Goal: solve in time $\lambda^k n^{k+o(k)}$

Tree Packing [Thorup]: [6LL'18]:

Given weighted graph, exists collection \mathcal{T} of poly(π) spanning trees of G s.t. for any min k-cut $S_1, S_2, ..., S_k \subseteq V$ exists tree $T \in \mathcal{T}$ s.t. $|E_T[S_1, S_2, ..., S_k]| \leq 2k$

Goal: solve in time $\lambda^k n^{k+o(k)}$

Tree Packing [Thorup]: [6LL'18]:

Given weighted graph, exists collection \mathcal{T} of poly(π) spanning trees of G s.t. for any min k-cut $S_1, S_2, ..., S_k \subseteq V$ exists tree $T \in \mathcal{T}$ s.t. $|E_T[S_1, S_2, ..., S_k]| \leq 2k$

Goal: solve in time $\lambda^k n^{k+o(k)}$

Tree Packing [Thorup]: [6LL'18]:

Given weighted graph, exists collection \mathcal{T} of poly(π) spanning trees of G s.t. for any min k-cut $S_1, S_2, ..., S_k \subseteq V$ exists tree $T \in \mathcal{T}$ s.t. $|E_T[S_1, S_2, ..., S_k]| \leq 2k$

Time
$$\widetilde{O}(\lambda_{k}^{k} n^{o(k)})$$

Goal: solve in time $\lambda^k n^{k+o(k)}$

Tree Packing [Thorup]: [6LL'18]:

Given weighted graph, exists collection \mathcal{T} of poly(n) spanning trees of G s.t. for any min k-cut $S_1, S_2, ..., S_k \subseteq V$ exists tree $T \in T$ s.t. $|E_T[S_1, S_2, ..., S_k]| \leq 2k - 2$

Time
$$\widetilde{O}(\lambda_k^k n^{\circ(k)})$$

$$(\lambda_k^k \text{ is FPT in } \lambda_k \text{ and } k,$$
but particular dependency matters!

Restricted Problem to Solve

given (tight) tree T, delete best k-1 edges to form smallest k-cut

Time
$$\widetilde{O}(\lambda_{k}^{k} n^{o(k)})$$

Restricted Problem to Solve

given (tight) tree T, delete best k-1 edges to form smallest k-cut

Time
$$\widetilde{O}(\lambda_{k}^{k} n^{o(k)})$$

This talk: when T is a "spider"

Restricted Problem to Solve

given (tight) tree T, delete best k-1 edges to form smallest k-cut

Time
$$\widetilde{O}(\lambda_{k}^{k} n^{o(k)})$$

This talk: when T is a "spider"

OPT cuts at most one edge per branch

given (tight) tree T, delete best k-1 edges to form smallest k-cut

Time
$$\widetilde{O}(\lambda_{k}^{k} n^{o(k)})$$

This talk: when T is a "spider"

OPT cuts at most one edge per branch

given (tight) tree T, delete best k-1 edges to form smallest k-cut

Time
$$\widetilde{O}(\lambda_{k}^{k} n^{o(k)})$$

This talk: when T is a "spider"

OPT cuts at most one edge per branch

given (tight) tree T, delete best k-1 edges to form smallest k-cut

Time
$$\widetilde{O}(\lambda_{k}^{k} n^{o(k)})$$

This talk: when T is a "spider"

OPT cuts at most one edge per branch

©Find which branches to cut: (#branches) choices cut these naively 3 branches

given (tight) tree T, delete best k-1 edges to form smallest k-cut

Time
$$\widetilde{O}(\lambda_k^k n^{o(k)})$$

This talk: when T is a "spider"

OPT cuts at most one edge per branch

Deal with double-counting

©Find which branches to cut: (#branches) choices sum as while-count @Deal with double-counting naively part 5?

given (tight) tree T, delete best k-1 edges to form smallest k-cut

Time
$$\widetilde{O}(\lambda_k^k n^{o(k)})$$

This talk: when T is a "spider"

OPT cuts at most one edge per branch

Deal with double-counting

(2) Extreme case: no edges between different branches

©Find which branches to cut: (#branches) choices sum as while-count @Deal with double-counting naively part 5?

given (tight) tree T, delete best k-1 edges to form smallest k-cut

Time
$$\widetilde{O}(\lambda_{k}^{k} n^{o(k)})$$

This talk: when T is a "spider"

OPT cuts at most one edge per branch

©Find which branches to cut: (#branches) choices sum as while-count of the country and the country part 5?

Deal with double-counting

(2) Extreme case: no edges between different branches

For each branch, take best cut; take best k-1 overall

Other extreme: suppose many edges between OPT's branches

Other extreme: suppose many edges between OPT's branches

Idea: color-code a spanning tree

connecting these branches

Other extreme: suppose many edges between OPT's

branches

Idea: color-code a spanning tree

connecting these branches

Other extreme: suppose many edges between OPT's

branches

Idea: color-code a spanning tree connecting these branches
Color each edge green w.p. p and red w.p. 1-p

Want: fixed spanning tree all green

Other extreme: suppose many edges between OPT's

branches

Idea: color-code a spanning tree connecting these branches
Color each edge green w.p. p and red w.p. 1-p

Other extreme: suppose many edges between OPT's

branches

Idea: color-code a spanning tree connecting these branches
Color each edge green w.p. p and red w.p. 1-p

Other extreme: suppose many edges between OPT's

branches

Idea: color-code a spanning tree connecting these branches
Color each edge green w.p. p and red w.p. 1-p

Other extreme: suppose many edges between OPT's

branches

Idea: color-code a spanning tree connecting these branches
Color each edge green w.p. p and red w.p. 1-p

Other extreme: suppose many edges between OPT's

branches

Idea: color-code a spanning tree connecting these branches
Color each edge green w.p. p and red w.p. 1-p

Other extreme: suppose many edges between OPT's

branches

Idea: color-code a spanning tree connecting these branches

Color each edge green w.p. p and

red w.p. 1-p

Want: fixed spanning tree all green

(WLOG: every edge cut ≤λ_k Otherwise OPT can't pick that edge, so contract)

For each of OPT's branches, remaining boundary edges red $\leq \lambda_k$ per branch $\Rightarrow \leq k \lambda_k$ total

Other extreme: suppose many edges between OPT's

branches

Idea: color-code a spanning tree

connecting these branches

Color each edge green w.p. p and

red w.p. 1-p

Want: fixed spanning tree all green

For each of OPT's branches, remaining boundary

edges red $\leq \lambda_k$ per branch $\Rightarrow \leq k \lambda_k$ total

success

Other extreme: suppose many edges between OPT's

branches

Idea: color-code a spanning tree connecting these branches

Color each edge green w.p. p and

red w.p. 1-p

Want: fixed spanning tree all green

For each of OPT's branches, remaining boundary

edges red $\leq \lambda_k$ per branch $\Rightarrow \leq k \lambda_k$ total?

success

Other extreme: suppose many edges between OPT's

branches

Idea: color-code a spanning tree

connecting these branches

Color each edge green w.p. p and

red w.p. 1-p

Want: fixed spanning tree all green

For each of OPT's branches, remaining boundary

edges red $\leq \lambda_k$ per branch $\Rightarrow \leq k \lambda_k$ total?

- Each branch containing an edge cut by OPT is blue
- Their ancestor branches are red
- O(log n) anc. branches per edge (by HLD)

- Each branch containing an edge cut by OPT is blue
- Their ancestor branches are red
- O(log n) anc. branches per edge

- Each branch containing an edge cut by OPT is blue
- Their ancestor branches are red
- O(log n) anc. branches per edge

- Each branch containing an edge cut by OPT is blue
- Their ancestor branches are red
- O(log n) anc. branches per edge

- Each branch containing an edge cut by OPT is blue
- Their ancestor branches are red
- O(log n) anc. branches per edge
- - Assumes OPT edges "incomparable"

Heavy-light decomposition into branches, color-code red/blue

- Each branch containing an edge cut by OPT is blue
- Their ancestor branches are red
- O(log n) anc. branches per edge
- - Assumes OPT edges "incomparable"

Reduce to incomparable: Dynamic program on subtrees [GLL18]

Faster min k-cut on a weighted graph?

Faster min k-cut on a weighted graph?

[Gupta Lee L] min k-cut in time $n^k 2^{0(\log \log n)^2}$

Faster min k-cut on a weighted graph?
[Gupta Lee L] min k-cut in time $n^k 2^{0(\log \log n)^2}$

• The Karger-Stein algorithm outputs any fixed min k-cut with probability $n^{-k}2^{-O(\log\log n)^2}!$ [Improve from n^{-2k}]

Faster min k-cut on a weighted graph? [Gupta Lee L] min k-cut in time $n^k 2^{0(\log \log n)^2}$

(TCS+ talk, Nov. 20) • The Karger-Stein algorithm outputs any fixed min k-cut with probability $n^{-k} 2^{-O(\log \log n)^2}$! [Improve from n=2k]

Faster min k-cut on a weighted graph? [Gupta Lee L] min k-cut in time $n^k 2^{0(\log \log n)^2}$

(TCS+ talk, Nov. 20) • The Karger-Stein algorithm outputs any fixed min k-cut with probability $n^{-k} 2^{-O(\log \log n)^2}$! [Improve from n=2k]

Deterministic n^k time?