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= o S o L
OFind which branches to cut: :_'f | )chmces?éfrmm,;\ Jouble—count

@Deal with double-counting nively Pt

(2) Extreme case: no edges between
different branches

)

For each branch, take best cut: take best k-1 overall
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» Each branch containing an

edge cut by OPT is blue
e Their ancestor branches are red
* O(log n) anc. branches per edge
* Color blue w.p. 1/logn: (by HLD)

( | -0(k)

0q h)
|D;ﬂ)k(‘_{;;_ﬂ-)0(kljh:|:PT(k)

e Assumes OPT e)dges
“incomparable’

Reduce to incomparable: Dynamic program on subtrees [GLL18]
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Future directions?

Faster min k-cut on a weighted graph’?
[Gupta Lee L] min k-cut in time n*Q
(TCS+talk, Nov. 20) o The Karger-Stein algorithm

outputs any fixed min k-cut
O(|03|03n)2

(|03 lbj I\)

with probability n*

Deterministic ﬁk time?



