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Approximate single-source shortest path (SSSP)...

• Input: undirected graph with nonnegative weights, and a
source vertex s

• Output (distances): approximations d̃(v) for all v ∈ V
satisfying dG(s, v) ≤ d̃(v) ≤ (1 + ε)dG(s, v)

• Output (tree): a spanning tree T satisfying
dG(s, v) ≤ d̃T (s, v) ≤ (1 + ε)dG(s, v)

...in parallel

• PRAM model: parallel foreach , runs each loop
independently in parallel

• Work: sum of running times of each loop
• Time/Span: max of running times
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Results

Past work
• Cohen [’94]: m1+δ work and polylog(n) time for any

constant δ > 0
• Introduced the concept of hopsets , “shortcut edges”

• polylog(n) factor improved by Elkin and Neiman [’18]
• Open: m polylog(n) work and polylog(n) time
• Surprising lower bound : no hopset-based m polylog(n)

work and polylog(n) time algorithm!

Our result
• m polylog(n) work and polylog(n) time via continuous

optimization
• Study a continuous relaxation of SSSP, the minimum

transshipment problem
• Concurrently: Andoni, Stein, Zhong [STOC’20] obtain the

same result with similar techniques
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• Constraint: a flow vector f ∈ RE satisfying the flow

constraint Af = b
• Objective: minimize ‖Cf‖1 =
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e cefe

• `1 version of max-flow (which is minimize ‖Cf‖∞)
• If b =

∑
v (1v − 1s), then best flow sends 1 unit along

shortest s–v path for each v 6= s
=⇒ generalizes SSSP in exact case

• Approximate versions do not generalize!
• But can reduce approximate SSSP to polylog(n) many

approximate transshipment calls
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Sherman’s framework
• Originally used by Sherman [’13] to solve

(1 + ε)-approximate max flow
• Reduces (1 + ε)-approximate transshipment to computing a

polylog(n)-approximate `1-oblivious routing scheme
• Reduction can be interpreted as multiplicative weights

update

`1-oblivious routing

• “`1” version of standard oblivious routing for max flow
• Main technical contribution : `1-oblivious routing in Õ(m)

work and polylog(n) time given an `1-embedding of the
graph
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Reducing to `1-metric

• Bourgain’s embedding: can embed a graph metric into
O(log n) dimensions distortion O(log n) (under `2 metric)
=⇒ O(log1.5 n) distortion under `1 metric

• Not clear how to do in parallel! (more later)
• But if we can do this, then reduces to solving `1-oblivious

routing on `1-metric
• Purely geometric problem now: vertices are just points in

`1-space
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• Input: set of points V ⊆ Zd , and “demand” function
b : V → R (

∑
v∈V b(v) = 0) that is unknown to us.

• On each step, choose any two points x , y ∈ Zd and a scalar
c ∈ R, and “shift” c times the demand at x to location y .
That is, we simultaneously update b(x)← b(x)− c ∙ b(x)
and b(y)← b(y) + c ∙ b(x). Pay c ∙ b(x) ∙ |x − y | total cost
for this step. (We not know how much we pay!)

• After some steps, declare that we are done. At this point,
we must be certain that the demand is 0 everywhere:
b(x) = 0 for all x ∈ Zd .

• Once we are done, learn the set of initial demands, sum up
our total cost, and compare it to the optimal strategy we
could have taken if we had known the demands
beforehand. Want polylog(n)-approximation.



Oblivious routing

Algorithm intuition



Oblivious routing

Algorithm intuition

• Should be unbiased : demand from a given vertex should
be spread evenly



Oblivious routing

Algorithm intuition

• Should be unbiased : demand from a given vertex should
be spread evenly

• Sherman’s algorithm [’17]: generalizes 1-d case, routes
each point to all 2d corners of the cube (d =

√
log n, get

2
√

log n factor)



Oblivious routing

Algorithm intuition

• Should be unbiased : demand from a given vertex should
be spread evenly

• Sherman’s algorithm [’17]: generalizes 1-d case, routes
each point to all 2d corners of the cube (d =

√
log n, get

2
√

log n factor)

Our algorithm



Oblivious routing

Algorithm intuition

• Should be unbiased : demand from a given vertex should
be spread evenly

• Sherman’s algorithm [’17]: generalizes 1-d case, routes
each point to all 2d corners of the cube (d =

√
log n, get

2
√

log n factor)

Our algorithm

• Route each point to polylog(n) random points nearby (not 1
point to control the variance)



Oblivious routing

Algorithm intuition

• Should be unbiased : demand from a given vertex should
be spread evenly

• Sherman’s algorithm [’17]: generalizes 1-d case, routes
each point to all 2d corners of the cube (d =

√
log n, get

2
√

log n factor)

Our algorithm

• Route each point to polylog(n) random points nearby (not 1
point to control the variance)

• Need to control number of new points (don’t want
polylog(n) blowup each level)
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Algorithm intuition

• Should be unbiased : demand from a given vertex should
be spread evenly

• Sherman’s algorithm [’17]: generalizes 1-d case, routes
each point to all 2d corners of the cube (d =

√
log n, get

2
√

log n factor)

Our algorithm

• Route each point to polylog(n) random points nearby (not 1
point to control the variance)

• Need to control number of new points (don’t want
polylog(n) blowup each level)

• Overlay a randomly shifted grid : each point sends to the
center of the grid it’s in; do this for polylog(n) many grids
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`1-embedding

Reducing to SSSP

• Bourgain’s embedding: reduces to computing O(log2 n)
many exact SSSP’s

• Turns out (1 + 1
log n )-approximate SSSP(*) is sufficient

• Want to apply recursion somehow

Ultrasparsification and recursion

• Compute an ultraspanner of the graph: (n − 1) + m
log4 n

edges, preserves distances up to polylog(n) factor
• Suffices to `1-embed this ultraspanner (pick up extra

polylog(n) in the distortion)
• SSSP on an ultraspanner can be reduced to approximate

SSSP on a graph of size m
log4 n

• After all reductions, recursively call approximate SSSP on
log4 n many graphs of size m

log4 n
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Open problems

Improve polylog(n) factor in running time

• Currently very high (at least log20 n)
• Deeper connection between transshipment and SSSP?
• Exact SSSP? Current best is Õ(m) work, n1/2+o(1) time

[Cao, Fineman, Russell STOC’20]


