Distributed Directed SSSP in Sublinear Time Jason Li Carnegie Mellon University

Joint work with Mohsen Ghaffari (ETH Zurich)

STOC 2018

Joint work with Mohsen Ghaffari (ETH Zurich) Distributed Directed SSSP in Sublinear Time

▲ @ ▶ < ≥ ▶ <</p>

Distributed Model

Joint work with Mohsen Ghaffari (ETH Zurich) Distributed Directed SSSP in Sublinear Time

★週 ▶ ★ 臣 ▶ ★ 臣 ▶ .

Distributed Model

Network graph

Joint work with Mohsen Ghaffari (ETH Zurich) Distributed Directed SSSP in Sublinear Time

イロト 不得 ト イヨト イヨト

Distributed Model

- Network graph
- Vertices are called <u>nodes</u>

イロト イ理ト イヨト・

Distributed Model

- Network graph
- Vertices are called nodes
- Algorithm runs in rounds. In each round:

イロト 不得下 イヨト イヨト

Distributed Model

- Network graph
- Vertices are called nodes
- Algorithm runs in rounds. In each round:
 - Every node performs unbounded local computation

Distributed Model

- Network graph
- Vertices are called nodes
- Algorithm runs in rounds. In each round:
 - Every node performs unbounded local computation
 - Every node sends an O(log n)-bit message to each neighbor

▲ @ ▶ ▲ ⊇ ▶ ▲

Distributed Model

- Network graph
- Vertices are called nodes
- Algorithm runs in rounds. In each round:
 - Every node performs unbounded local computation
 - Every node sends an O(log n)-bit message to each neighbor
- The running time is the number of rounds

▲ 伊 ▶ ▲ 三 ▶ ▲

Distributed Model

- Network graph
- Vertices are called nodes
- Algorithm runs in rounds. In each round:
 - Every node performs unbounded local computation
 - Every node sends an O(log n)-bit message to each neighbor
- The running time is the number of rounds

SSSP Problem

A (10) × (10) × (10)

Distributed Model

- Network graph
- Vertices are called nodes
- Algorithm runs in rounds. In each round:
 - Every node performs unbounded local computation
 - Every node sends an O(log n)-bit message to each neighbor
- The running time is the number of rounds

SSSP Problem

Input graph and network graph have same edges

▲冊 ▶ ▲ 臣 ▶ ▲

Distributed Model

- Network graph
- Vertices are called nodes
- Algorithm runs in rounds. In each round:
 - Every node performs unbounded local computation
 - Every node sends an O(log n)-bit message to each neighbor
- The running time is the number of rounds

SSSP Problem

- Input graph and network graph have same edges
- Beginning: every node knows weights of its edges

A (10) × (10) × (10)

Distributed Model

- Network graph
- Vertices are called nodes
- Algorithm runs in rounds. In each round:
 - Every node performs unbounded local computation
 - Every node sends an O(log n)-bit message to each neighbor
- The running time is the number of rounds

SSSP Problem

- Input graph and network graph have same edges
- Beginning: every node knows weights of its edges
- End: every node knows its distance from source

・ロト ・聞 ト ・ 国 ト ・ 国

• Trivial *n* – 1 upper bound (Bellman-Ford)

イロト 不得 トイヨト イヨト

- Trivial *n* 1 upper bound (Bellman-Ford)
- Trivial $\Omega(D)$ lower bound

イロト 不得 トイヨト イヨト

- Trivial *n* 1 upper bound (Bellman-Ford)
- Trivial $\Omega(D)$ lower bound
- Unweighted, undirected: BFS in D rounds

・ロト ・四ト ・ヨト ・ヨト

- Trivial *n* 1 upper bound (Bellman-Ford)
- Trivial $\Omega(D)$ lower bound
- Unweighted, undirected: BFS in D rounds
- Weighted, undirected?

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

- Trivial *n* 1 upper bound (Bellman-Ford)
- Trivial $\Omega(D)$ lower bound
- Unweighted, undirected: BFS in D rounds
- Weighted, undirected?
- BFS, Bellman-Ford?

イロト 不得 トイヨト イヨト

- Trivial *n* 1 upper bound (Bellman-Ford)
- Trivial $\Omega(D)$ lower bound
- Unweighted, undirected: BFS in D rounds
- Weighted, undirected?
- BFS, Bellman-Ford?

- Trivial *n* 1 upper bound (Bellman-Ford)
- Trivial $\Omega(D)$ lower bound
- Unweighted, undirected: BFS in D rounds
- Weighted, undirected?
- BFS, Bellman-Ford?

- Trivial n 1 upper bound (Bellman-Ford)
- Trivial $\Omega(D)$ lower bound
- Unweighted, undirected: BFS in D rounds
- Weighted, undirected?
- BFS, Bellman-Ford all $\Theta(n)$ time on a D = 2 graph!

• Elkin, 2004: Approximate SSSP in sublinear time?

ヘロト 人間 とく ヨン 人 ヨン

æ -

- Elkin, 2004: Approximate SSSP in sublinear time?
- [Nan14, STOC'14] $\tilde{O}(n^{1/2}D^{1/4} + D)$ undirected, slightly worse for directed

イロト 不得 トイヨト イヨト

- Elkin, 2004: Approximate SSSP in sublinear time?
- [Nan14, STOC'14] $\tilde{O}(n^{1/2}D^{1/4} + D)$ undirected, slightly worse for directed
- [HKN16, STOC'16] $O(n^{1/2+o(1)} + n^{o(1)}D)$ undirected

・ロン ・聞 と ・ ヨ と ・ ヨ と

- Elkin, 2004: Approximate SSSP in sublinear time?
- [Nan14, STOC'14] $\tilde{O}(n^{1/2}D^{1/4} + D)$ undirected, slightly worse for directed
- [HKN16, STOC'16] $O(n^{1/2+o(1)} + n^{o(1)}D)$ undirected
- [BKKL17, DISC'17] $\tilde{O}(n^{1/2} + D)$ undirected

ヘロト ヘ戸ト ヘヨト ヘヨト

- Elkin, 2004: Approximate SSSP in sublinear time?
- [Nan14, STOC'14] $\tilde{O}(n^{1/2}D^{1/4} + D)$ undirected, slightly worse for directed
- [HKN16, STOC'16] $O(n^{1/2+o(1)} + n^{o(1)}D)$ undirected
- [BKKL17, DISC'17] $\tilde{O}(n^{1/2} + D)$ undirected
- [SHK+11, STOC'11] $\tilde{O}(n^{1/2} + D)$ lower bound

- Elkin, 2004: Approximate SSSP in sublinear time?
- [Nan14, STOC'14] $\tilde{O}(n^{1/2}D^{1/4} + D)$ undirected, slightly worse for directed
- [HKN16, STOC'16] $O(n^{1/2+o(1)} + n^{o(1)}D)$ undirected
- [BKKL17, DISC'17] $\tilde{O}(n^{1/2} + D)$ undirected
- [SHK+11, STOC'11] $\tilde{O}(n^{1/2} + D)$ lower bound

- Elkin, 2004: Approximate SSSP in sublinear time?
- [Nan14, STOC'14] $\tilde{O}(n^{1/2}D^{1/4} + D)$ undirected, slightly worse for directed
- [HKN16, STOC'16] $O(n^{1/2+o(1)} + n^{o(1)}D)$ undirected
- [BKKL17, DISC'17] $\tilde{O}(n^{1/2} + D)$ undirected
- [SHK+11, STOC'11] $\tilde{O}(n^{1/2} + D)$ lower bound

- Elkin, 2004: Approximate SSSP in sublinear time?
- [Nan14, STOC'14] $\tilde{O}(n^{1/2}D^{1/4} + D)$ undirected, slightly worse for directed
- [HKN16, STOC'16] $O(n^{1/2+o(1)} + n^{o(1)}D)$ undirected
- [BKKL17, DISC'17] $\tilde{O}(n^{1/2} + D)$ undirected
- [SHK+11, STOC'11] $\tilde{O}(n^{1/2} + D)$ lower bound
- Elkin, 2004: Exact SSSP in sublinear time?

くロ とく得 とくほ とくほ とう

- Elkin, 2004: Approximate SSSP in sublinear time?
- [Nan14, STOC'14] $\tilde{O}(n^{1/2}D^{1/4} + D)$ undirected, slightly worse for directed
- [HKN16, STOC'16] $O(n^{1/2+o(1)} + n^{o(1)}D)$ undirected
- [BKKL17, DISC'17] $\tilde{O}(n^{1/2} + D)$ undirected
- [SHK+11, STOC'11] $\tilde{O}(n^{1/2} + D)$ lower bound
- Elkin, 2004: Exact SSSP in sublinear time?
- [Elk17, STOC'17] $\tilde{O}(\max\{n^{5/6}, n^{2/3}D^{1/3}\})$ undirected

くロト (得) (ほ) (ほ)

- Elkin, 2004: Approximate SSSP in sublinear time?
- [Nan14, STOC'14] $\tilde{O}(n^{1/2}D^{1/4} + D)$ undirected, slightly worse for directed
- [HKN16, STOC'16] $O(n^{1/2+o(1)} + n^{o(1)}D)$ undirected
- [BKKL17, DISC'17] $\tilde{O}(n^{1/2} + D)$ undirected
- [SHK+11, STOC'11] $\tilde{O}(n^{1/2} + D)$ lower bound
- Elkin, 2004: Exact SSSP in sublinear time?
- [Elk17, STOC'17] $\tilde{O}(\max\{n^{5/6}, n^{2/3}D^{1/3}\})$ undirected
- This talk: $\tilde{O}(n^{3/4}D^{1/4})$ directed

くロト (得) (ほ) (ほ)

- Elkin, 2004: Approximate SSSP in sublinear time?
- [Nan14, STOC'14] $\tilde{O}(n^{1/2}D^{1/4} + D)$ undirected, slightly worse for directed
- [HKN16, STOC'16] $O(n^{1/2+o(1)} + n^{o(1)}D)$ undirected
- [BKKL17, DISC'17] $\tilde{O}(n^{1/2} + D)$ undirected
- [SHK+11, STOC'11] $\tilde{O}(n^{1/2} + D)$ lower bound
- Elkin, 2004: Exact SSSP in sublinear time?
- [Elk17, STOC'17] $\tilde{O}(\max\{n^{5/6}, n^{2/3}D^{1/3}\})$ undirected
- This talk: $\tilde{O}(n^{3/4}D^{1/4})$ directed
- [KN18, independent] $\tilde{O}(n^{1/2}D^{1/2})$ directed

ヘロト ヘ戸ト ヘヨト ヘヨト

- Elkin, 2004: Approximate SSSP in sublinear time?
- [Nan14, STOC'14] $\tilde{O}(n^{1/2}D^{1/4} + D)$ undirected, slightly worse for directed
- [HKN16, STOC'16] $O(n^{1/2+o(1)} + n^{o(1)}D)$ undirected
- [BKKL17, DISC'17] $\tilde{O}(n^{1/2} + D)$ undirected
- [SHK+11, STOC'11] $\tilde{O}(n^{1/2} + D)$ lower bound
- Elkin, 2004: Exact SSSP in sublinear time?
- [Elk17, STOC'17] $\tilde{O}(\max\{n^{5/6}, n^{2/3}D^{1/3}\})$ undirected
- This talk: $\tilde{O}(n^{3/4}D^{1/4})$ directed
- [KN18, independent] $\tilde{O}(n^{1/2}D^{1/2})$ directed
- [HNS17, FOCS'17] $\tilde{O}(n^{5/4})$ time APSP on directed graphs

ヘロト 人間 とくほ とくほん

• [UY91]: Sample a set of centers

Joint work with Mohsen Ghaffari (ETH Zurich) Distributed Directed SSSP in Sublinear Time

イロト イ理ト イヨト イヨト

- [UY91]: Sample a set of centers
- Each node declares itself a center w.p. k/n (think $k = \sqrt{n}$)

・ロト ・聞 ト ・ ヨト ・ ヨトー

- [UY91]: Sample a set of centers
- Each node declares itself a center w.p. k/n (think $k = \sqrt{n}$)
- Chernoff: w.h.p. $\Theta(k)$ centers

・ロト ・四ト ・ヨト ・ヨト

- [UY91]: Sample a set of centers
- Each node declares itself a center w.p. k/n (think $k = \sqrt{n}$)
- Chernoff: w.h.p. $\Theta(k)$ centers
- Key property: for all nodes *t*, exists shortest s → *t* path with centers spaced at most O(n/k · log n) nodes apart

・ロト ・聞 ト ・ ヨト ・ ヨト
- [UY91]: Sample a set of centers
- Each node declares itself a center w.p. k/n (think $k = \sqrt{n}$)
- Chernoff: w.h.p. $\Theta(k)$ centers
- Key property: for all nodes *t*, exists shortest s → *t* path with centers spaced at most O(n/k · log n) nodes apart

ヘロト ヘ戸ト ヘヨト ヘヨト

- [UY91]: Sample a set of centers
- Each node declares itself a center w.p. k/n (think $k = \sqrt{n}$)
- Chernoff: w.h.p. $\Theta(k)$ centers
- Key property: for all nodes *t*, exists shortest s → *t* path with centers spaced at most O(n/k · log n) nodes apart

Proof?

ヘロト ヘ戸ト ヘヨト ヘヨト

- [UY91]: Sample a set of centers
- Each node declares itself a center w.p. k/n (think $k = \sqrt{n}$)
- Chernoff: w.h.p. $\Theta(k)$ centers
- Key property: for all nodes *t*, exists shortest s → *t* path with centers spaced at most O(n/k · log n) nodes apart

Proof?

イロト 不得 トイヨト イヨト

- [UY91]: Sample a set of centers
- Each node declares itself a center w.p. k/n (think $k = \sqrt{n}$)
- Chernoff: w.h.p. $\Theta(k)$ centers
- Key property: for all nodes *t*, exists shortest s → *t* path with centers spaced at most O(n/k · log n) nodes apart

- Proof?
- Pr[no centers within block of $C \cdot n/k \cdot \log n$] = $(1 - k/n)^{C \cdot n/k \cdot \log n} \approx n^{-C}$

ヘロト 人間 とくほ とくほん

- [UY91]: Sample a set of centers
- Each node declares itself a center w.p. k/n (think $k = \sqrt{n}$)
- Chernoff: w.h.p. $\Theta(k)$ centers
- Key property: for all nodes *t*, exists shortest s → *t* path with centers spaced at most O(n/k · log n) nodes apart

- Proof?
- Pr[no centers within block of $C \cdot n/k \cdot \log n$] = $(1 - k/n)^{C \cdot n/k \cdot \log n} \approx n^{-C}$
- Union bound: all O(n) values of t, all O(n) positions

イロト (過) (ほ) (ほ)

 Key property: for all nodes *t*, exists shortest s → *t* path with centers spaced at most O(n/k · log n) nodes apart

< ロ > < 同 > < 回 > < 回 > < 回 >

 Key property: for all nodes *t*, exists shortest s → *t* path with centers spaced at most O(n/k · log n) nodes apart

• Claim: $\forall t$, exists shortest $s \to t$ path in $G \cup G'$ using $\tilde{O}(n/k+k)$ hops

- Claim: $\forall t$, exists shortest $s \to t$ path in $G \cup G'$ using $\tilde{O}(n/k+k)$ hops
- G' shortcuts the graph G

э

크 > 크

Joint work with Mohsen Ghaffari (ETH Zurich) Distributed Directed SSSP in Sublinear Time

æ

э

Joint work with Mohsen Ghaffari (ETH Zurich) Distributed Directed SSSP in Sublinear Time

æ

э

Purple edges divided into blue edges (d(c, c') ≤ ℓ) and red edges (d(c, c') > ℓ).

- Purple edges divided into blue edges (d(c, c') ≤ ℓ) and red edges (d(c, c') > ℓ).
- ShortRange [HNS17]: fast distributed algorithm, computes blue edges but not red.

- Purple edges divided into blue edges (d(c, c') ≤ ℓ) and red edges (d(c, c') > ℓ).
- ShortRange [HNS17]: fast distributed algorithm, computes blue edges but not red.
- Our contribution: compute red edges.

• Red edges: $\leq h$ hops but distance $> \ell$

$$s - \bullet - \bullet - \cdots - \underbrace{\overset{\in C}{(1)}}_{\leq h \text{ hops}} - \bullet - \bullet - \underbrace{\overset{\in C}{(2)}}_{> \ell \text{ distance}} \cdots - \bullet - \bullet - t$$

B-F works for any distance, so try B-F?

$$s - \bullet - \bullet - \cdots - \underbrace{\overset{\in C}{(1)}}_{\leq h \text{ hops}} - \cdots - \bullet - \bullet - t$$

- B-F works for any distance, so try B-F?
- Idea: bucket the nodes, single B-F for each bucket

$$s - \bullet - \bullet - \cdots - \underbrace{\overset{\in C}{(1)}}_{\leq h \text{ hops}} - \bullet - \bullet - \underbrace{\overset{\in C}{(2)}}_{> \ell \text{ distance}} \cdots - \bullet - \bullet - t$$

- B-F works for any distance, so try B-F?
- Idea: bucket the nodes, single B-F for each bucket
 - Ensure: Red edges relevant to SSSP must connect different buckets

$$s - \bullet - \bullet - \cdots - \underbrace{\overset{\in C}{(1)}}_{\leq h \text{ hops}} - \bullet - \bullet - \underbrace{\overset{\in C}{(2)}}_{> \ell \text{ distance}} \cdots - \bullet - \bullet - t$$

- B-F works for any distance, so try B-F?
- Idea: bucket the nodes, single B-F for each bucket
 - Ensure: Red edges relevant to SSSP must connect different buckets

- Process buckets in increasing order, using blue edges
- Run B-F to depth h after finishing distances in one bucket

Blue edges: $\leq h$ hops and distance $\leq \ell$, known Red edges: $\leq h$ hops and distance $> \ell$, unknown

- Process buckets in increasing order, using blue edges
- Run B-F to depth h after finishing distances in one bucket

Blue edges: $\leq h$ hops and distance $\leq \ell$, known Red edges: $\leq h$ hops and distance $> \ell$, unknown

- Process buckets in increasing order, using blue edges
- Run B-F to depth h after finishing distances in one bucket

Blue edges: $\leq h$ hops and distance $\leq \ell$, known Red edges: $\leq h$ hops and distance $> \ell$, unknown

- Process buckets in increasing order, using blue edges
- Run B-F to depth h after finishing distances in one bucket

Blue edges: $\leq h$ hops and distance $\leq \ell$, known Red edges: $\leq h$ hops and distance $> \ell$, unknown

- Process buckets in increasing order, using blue edges
- Run B-F to depth h after finishing distances in one bucket

Blue edges: $\leq h$ hops and distance $\leq \ell$, known Red edges: $\leq h$ hops and distance $> \ell$, unknown

- Process buckets in increasing order, using blue edges
- Run B-F to depth h after finishing distances in one bucket

Blue edges: $\leq h$ hops and distance $\leq \ell$, known Red edges: $\leq h$ hops and distance $> \ell$, unknown

- Process buckets in increasing order, using blue edges
- Run B-F to depth h after finishing distances in one bucket

Blue edges: $\leq h$ hops and distance $\leq \ell$, known Red edges: $\leq h$ hops and distance $> \ell$, unknown

- Process buckets in increasing order, using blue edges
- Run B-F to depth h after finishing distances in one bucket

Blue edges: $\leq h$ hops and distance $\leq \ell$, known Red edges: $\leq h$ hops and distance $> \ell$, unknown

- Process buckets in increasing order, using blue edges
- Run B-F to depth h after finishing distances in one bucket

Blue edges: $\leq h$ hops and distance $\leq \ell$, known Red edges: $\leq h$ hops and distance $> \ell$, unknown

- Process buckets in increasing order, using blue edges
- Run B-F to depth h after finishing distances in one bucket

Blue edges: $\leq h$ hops and distance $\leq \ell$, known Red edges: $\leq h$ hops and distance $> \ell$, unknown

- Process buckets in increasing order, using blue edges
- Run B-F to depth h after finishing distances in one bucket

Blue edges: $\leq h$ hops and distance $\leq \ell$, known Red edges: $\leq h$ hops and distance $> \ell$, unknown
• Every node joins center w.p. k/n

・ロト ・聞 ト ・ 国 ト ・ 国 ト

- Every node joins center w.p. k/n
- 2 $h \leftarrow \Theta(n \log n/k)$

イロト イ理ト イヨト イヨト

- Severy node joins center w.p. k/n
- 2 $h \leftarrow \Theta(n \log n/k)$
- ShortRange(centers $c, \leq h$ hops, distance $\leq \ell$)

・ロト ・聞 ト ・ ヨト ・ ヨト

- Severy node joins center w.p. k/n
- 2 $h \leftarrow \Theta(n \log n/k)$
- ShortRange(centers $c, \leq h$ hops, distance $\leq \ell$)
- for each bucket in order do

・ロト ・理ト ・ヨト

- Every node joins center w.p. k/n
- 2 $h \leftarrow \Theta(n \log n/k)$
- ShortRange(centers $c, \leq h$ hops, distance $\leq \ell$)
- for each bucket in order do
 - Process bucket using blue edges

イロト イ押ト イヨト イヨト

- Every node joins center w.p. k/n
- 2 $h \leftarrow \Theta(n \log n/k)$
- ShortRange(centers $c, \leq h$ hops, distance $\leq \ell$)
- for each bucket in order do
 - Process bucket using blue edges
 - Run B-F for h rounds

《曰》《聞》《臣》《臣》

- Every node joins center w.p. k/n
- 2 $h \leftarrow \Theta(n \log n/k)$
- ShortRange(centers $c, \leq h$ hops, distance $\leq \ell$)
- for each bucket in order do
 - Process bucket using blue edges
 - Run B-F for h rounds

《曰》《聞》《臣》《臣》

- Every node joins center w.p. k/n
- 2 $h \leftarrow \Theta(n \log n/k)$
- ShortRange(centers $c, \leq h$ hops, distance $\leq \ell$)
- for each bucket in order do
 - Process bucket using blue edges
 - Run B-F for h rounds

Running time: optimize $k, \ell \rightarrow \tilde{O}(n^{3/4}D^{1/4})$ time

・ロト ・聞 ト ・ ヨト ・ ヨトー

• Beat $\tilde{O}(\min\{n^{2/3}, n^{1/2}D^{1/2}\})$ for $(1 + \epsilon)$ -approximate

ヘロト ヘ戸ト ヘヨト ・ ヨト

• Beat $\tilde{O}(\min\{n^{2/3}, n^{1/2}D^{1/2}\})$ for $(1 + \epsilon)$ -approximate

Exact SSSP

ヘロト ヘ戸ト ヘヨト ・ ヨト

• Beat $\tilde{O}(\min\{n^{2/3}, n^{1/2}D^{1/2}\})$ for $(1 + \epsilon)$ -approximate

- Exact SSSP
 - $\tilde{O}(n^{1/2}D^{1/2})$ [KN18] is optimal for D = polylog(n)

ヘロト 人間 とくほ とくほん

э.

• Beat $\tilde{O}(\min\{n^{2/3}, n^{1/2}D^{1/2}\})$ for $(1 + \epsilon)$ -approximate

- Exact SSSP
 - $\tilde{O}(n^{1/2}D^{1/2})$ [KN18] is optimal for D = polylog(n)
 - Lower bound: $\tilde{O}(\sqrt{n} + D)$

ヘロト 人間 とくほ とくほん

- Even approximate SSSP on directed graphs still unresolved
 - Beat $\tilde{O}(\min\{n^{2/3}, n^{1/2}D^{1/2}\})$ for $(1 + \epsilon)$ -approximate
- Exact SSSP
 - $\tilde{O}(n^{1/2}D^{1/2})$ [KN18] is optimal for D = polylog(n)
 - Lower bound: $\tilde{O}(\sqrt{n} + D)$
 - For higher D, [KN18] get $\tilde{O}(\sqrt{n}D^{1/4} + n^{3/5})$ time

- Even approximate SSSP on directed graphs still unresolved
 - Beat $\tilde{O}(\min\{n^{2/3}, n^{1/2}D^{1/2}\})$ for $(1 + \epsilon)$ -approximate
- Exact SSSP
 - $\tilde{O}(n^{1/2}D^{1/2})$ [KN18] is optimal for D = polylog(n)
 - Lower bound: $\tilde{O}(\sqrt{n} + D)$
 - For higher D, [KN18] get $\tilde{O}(\sqrt{n}D^{1/4} + n^{3/5})$ time

ヘロト ヘ戸ト ヘヨト ・ ヨト