
Fair Cuts:
Motivation, Definition, and Applications

Jason Li (Simons Institute)
Joint with Danupon Nanongkai (MPI),

Debmalya Panigrahi (Duke), and
Thatchaphol Saranurak (UMich)

SODA 2023
January 22, 2023



Minimum Cuts and Uncrossing
• s–t mincut of an (undirected) graph: the smallest set of

edges whose removal disconnects s and t

s

t

u

v

s

t

u

v

s

t



Minimum Cuts and Uncrossing
• s–t mincut of an (undirected) graph: the smallest set of

edges whose removal disconnects s and t
• Uncrossing property of s–t mincuts:

s

t

u

v

s

t

u

v

s

t



Minimum Cuts and Uncrossing
• s–t mincut of an (undirected) graph: the smallest set of

edges whose removal disconnects s and t
• Uncrossing property of s–t mincuts:

• for any s–t mincut and vertices u, v , there exists a u–v
mincut that does not “cross”

s

t

u

v

Used in divide-and-conquer algorithms for Gomory-Hu tree
(all-pairs mincut): “dividing” on s–t mincut does not destroy
u–v mincut

s

t

u

v

s

t



Minimum Cuts and Uncrossing
• s–t mincut of an (undirected) graph: the smallest set of

edges whose removal disconnects s and t
• Uncrossing property of s–t mincuts:

• for any s–t mincut and vertices u, v , there exists a u–v
mincut that does not “cross”

• Can be proved by submodularity of cuts. This talk:
flow-based proof.

s

t

u

v

s

t



Minimum Cuts and Uncrossing
• s–t mincut of an (undirected) graph: the smallest set of

edges whose removal disconnects s and t
• Uncrossing property of s–t mincuts:

• for any s–t mincut and vertices u, v , there exists a u–v
mincut that does not “cross”

• Can be proved by submodularity of cuts. This talk:
flow-based proof.

• Suppose s–t mincut and u–v mincut cross:

s

t

u

v

s

t



Minimum Cuts and Uncrossing

• s–t mincut of an (undirected) graph: the smallest set of
edges whose removal disconnects s and t

• Uncrossing property of s–t mincuts:
• for any s–t mincut and vertices u, v , there exists a u–v

mincut that does not “cross”
• Can be proved by submodularity of cuts. This talk:

flow-based proof.
• Suppose s–t mincut and u–v mincut cross:
• Consider a maximum s–t flow, which saturates the cut

edges by max-flow-min-cut theorem

s

t



Minimum Cuts and Uncrossing

• s–t mincut of an (undirected) graph: the smallest set of
edges whose removal disconnects s and t

• Uncrossing property of s–t mincuts:
• for any s–t mincut and vertices u, v , there exists a u–v

mincut that does not “cross”
• Can be proved by submodularity of cuts. This talk:

flow-based proof.
• Suppose s–t mincut and u–v mincut cross:
• Consider a maximum s–t flow, which saturates the cut

edges by max-flow-min-cut theorem

s

t

u

v



Minimum Cuts and Uncrossing

• s–t mincut of an (undirected) graph: the smallest set of
edges whose removal disconnects s and t

• Uncrossing property of s–t mincuts:
• for any s–t mincut and vertices u, v , there exists a u–v

mincut that does not “cross”
• Can be proved by submodularity of cuts. This talk:

flow-based proof.
• Suppose s–t mincut and u–v mincut cross:
• Consider a maximum s–t flow, which saturates the cut

edges by max-flow-min-cut theorem

s

t

u

v



Minimum Cuts and Uncrossing

• s–t mincut of an (undirected) graph: the smallest set of
edges whose removal disconnects s and t

• Uncrossing property of s–t mincuts:
• for any s–t mincut and vertices u, v , there exists a u–v

mincut that does not “cross”
• Can be proved by submodularity of cuts. This talk:

flow-based proof.
• Suppose s–t mincut and u–v mincut cross:
• Consider a maximum s–t flow, which saturates the cut

edges by max-flow-min-cut theorem

s

t

u

v

≤



Minimum Cuts and Uncrossing

• s–t mincut of an (undirected) graph: the smallest set of
edges whose removal disconnects s and t

• Uncrossing property of s–t mincuts:
• for any s–t mincut and vertices u, v , there exists a u–v

mincut that does not “cross”
• Can be proved by submodularity of cuts. This talk:

flow-based proof.
• Suppose s–t mincut and u–v mincut cross:
• Consider a maximum s–t flow, which saturates the cut

edges by max-flow-min-cut theorem

s

t

u

v



Minimum Cuts and Uncrossing

• s–t mincut of an (undirected) graph: the smallest set of
edges whose removal disconnects s and t

• Uncrossing property of s–t mincuts:
• for any s–t mincut and vertices u, v , there exists a u–v

mincut that does not “cross”
• Can be proved by submodularity of cuts. This talk:

flow-based proof.
• Suppose s–t mincut and u–v mincut cross:
• Consider a maximum s–t flow, which saturates the cut

edges by max-flow-min-cut theorem

s

t

u

v

• Obtained a u–v cut whose size can only be smaller =⇒
also u–v mincut



Minimum Cuts and Uncrossing

• s–t mincut of an (undirected) graph: the smallest set of
edges whose removal disconnects s and t

• Uncrossing property of s–t mincuts:
• for any s–t mincut and vertices u, v , there exists a u–v

mincut that does not “cross”
• Can be proved by submodularity of cuts. This talk:

flow-based proof.
• Suppose s–t mincut and u–v mincut cross:
• Consider a maximum s–t flow, which saturates the cut

edges by max-flow-min-cut theorem

s

t

u

v

• Obtained a u–v cut whose size can only be smaller =⇒
also u–v mincut

• We have uncrossed the u–v mincut with the s–t mincut.



Approximate Uncrossing?

• [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva’21] s–t mincut
can be solved in m1+o(1) time—almost optimal!

s

t

u

v 1000



Approximate Uncrossing?

• [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva’21] s–t mincut
can be solved in m1+o(1) time—almost optimal!

• However, algorithm is very complicated

s

t

u

v 1000



Approximate Uncrossing?

• [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva’21] s–t mincut
can be solved in m1+o(1) time—almost optimal!

• However, algorithm is very complicated
• Inherently sequential

s

t

u

v 1000



Approximate Uncrossing?

• [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva’21] s–t mincut
can be solved in m1+o(1) time—almost optimal!

• However, algorithm is very complicated
• Inherently sequential

• [Sherman’13,Peng’16] (1 + ε)-approximate s–t mincut in
Õ(m) time

s

t

u

v 1000



Approximate Uncrossing?

• [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva’21] s–t mincut
can be solved in m1+o(1) time—almost optimal!

• However, algorithm is very complicated
• Inherently sequential

• [Sherman’13,Peng’16] (1 + ε)-approximate s–t mincut in
Õ(m) time

• conceptually much simpler

s

t

u

v 1000



Approximate Uncrossing?

• [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva’21] s–t mincut
can be solved in m1+o(1) time—almost optimal!

• However, algorithm is very complicated
• Inherently sequential

• [Sherman’13,Peng’16] (1 + ε)-approximate s–t mincut in
Õ(m) time

• conceptually much simpler
• can be implemented in parallel

s

t

u

v 1000



Approximate Uncrossing?

• [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva’21] s–t mincut
can be solved in m1+o(1) time—almost optimal!

• However, algorithm is very complicated
• Inherently sequential

• [Sherman’13,Peng’16] (1 + ε)-approximate s–t mincut in
Õ(m) time

• conceptually much simpler
• can be implemented in parallel

• Can approximate mincuts be uncrossed?

s

t

u

v 1000



Approximate Uncrossing?

• [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva’21] s–t mincut
can be solved in m1+o(1) time—almost optimal!

• However, algorithm is very complicated
• Inherently sequential

• [Sherman’13,Peng’16] (1 + ε)-approximate s–t mincut in
Õ(m) time

• conceptually much simpler
• can be implemented in parallel

• Can approximate mincuts be uncrossed?
• Not necessarily...

s

t

u

v
1000



Approximate Uncrossing?

• [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva’21] s–t mincut
can be solved in m1+o(1) time—almost optimal!

• However, algorithm is very complicated
• Inherently sequential

• [Sherman’13,Peng’16] (1 + ε)-approximate s–t mincut in
Õ(m) time

• conceptually much simpler
• can be implemented in parallel

• Can approximate mincuts be uncrossed?
• Not necessarily...

s

t

u

v
1000

• Main obstacle to obtaining approximate Gomory-Hu tree
(all-pairs mincut) from approximate s–t mincut



Fair Cuts: Motivation

• Let’s look at this example again:

s

t

u

v
1000



Fair Cuts: Motivation

• Let’s look at this example again:

s

t

u

v
1000

• Can locally improve the s–t mincut, i.e., the s–t mincut was
locally bad



Fair Cuts: Motivation

• Let’s look at this example again:

s

t

u

v
1000

• Can locally improve the s–t mincut, i.e., the s–t mincut was
locally bad

• Fair cuts: s–t cuts that are nowhere locally bad, i.e.,
uniformly good



Fair Cuts: Motivation

• Let’s look at this example again:

s

t

u

v
1000

• Can locally improve the s–t mincut, i.e., the s–t mincut was
locally bad

• Fair cuts: s–t cuts that are nowhere locally bad, i.e.,
uniformly good

• Ideal theorem: for any (1 + ε)-fair s–t cut and vertices u, v ,
there exists a (1 + ε)-approximate u–v cut that does not
cross



Fair Cuts: Motivation

• Let’s look at this example again:

s

t

u

v
1000

• Can locally improve the s–t mincut, i.e., the s–t mincut was
locally bad

• Fair cuts: s–t cuts that are nowhere locally bad, i.e.,
uniformly good

• Ideal theorem: for any (1 + ε)-fair s–t cut and vertices u, v ,
there exists a (1 + ε)-approximate u–v cut that does not
cross

• To formally define (1 + ε)-fair, we switch to flow-based
perspective again



Fair Cuts: Definition

• Definition: an s–t cut is (1 + ε)-fair if there exists an s → t
flow such that every edge of the cut is nearly saturated

s

t

(1 − ε)

(1 − ε)

(1 − ε)

(1 − ε)

(1 − ε)

s

t



Fair Cuts: Definition

• Definition: an s–t cut is (1 + ε)-fair if there exists an s → t
flow such that every edge of the cut is nearly saturated

• The flow along each cut edge in the s → t direction is at
least 1

1+ε times edge capacity

s

t

(1 − ε)

(1 − ε)

(1 − ε)

(1 − ε)

(1 − ε)

s

t



Fair Cuts: Definition

• Definition: an s–t cut is (1 + ε)-fair if there exists an s → t
flow such that every edge of the cut is nearly saturated

• The flow along each cut edge in the s → t direction is at
least 1

1+ε times edge capacity

s

t

(1 − ε)

(1 − ε)

(1 − ε)

(1 − ε)

(1 − ε)

• Theorem: for any (1 + ε)-fair s–t cut and vertices u, v , there
exists a (1 + ε)-approximate u–v cut that does not cross

s

t



Fair Cuts: Definition

• Definition: an s–t cut is (1 + ε)-fair if there exists an s → t
flow such that every edge of the cut is nearly saturated

• The flow along each cut edge in the s → t direction is at
least 1

1+ε times edge capacity

s

t

(1 − ε)

(1 − ε)

(1 − ε)

(1 − ε)

(1 − ε)

• Theorem: for any (1 + ε)-fair s–t cut and vertices u, v , there
exists a (1 + ε)-approximate u–v cut that does not cross

• Proof: consider the nearly saturating flow...

s

t



Fair Cuts: Definition

• Definition: an s–t cut is (1 + ε)-fair if there exists an s → t
flow such that every edge of the cut is nearly saturated

• The flow along each cut edge in the s → t direction is at
least 1

1+ε times edge capacity

s

t

(1 − ε)

(1 − ε)

(1 − ε)

(1 − ε)

(1 − ε)

• Theorem: for any (1 + ε)-fair s–t cut and vertices u, v , there
exists a (1 + ε)-approximate u–v cut that does not cross

• Proof: consider the nearly saturating flow...

s

t

u

v

(1 − ε)

(1 − ε)

(1 − ε)



Fair Cuts: Definition

• Definition: an s–t cut is (1 + ε)-fair if there exists an s → t
flow such that every edge of the cut is nearly saturated

• The flow along each cut edge in the s → t direction is at
least 1

1+ε times edge capacity

s

t

(1 − ε)

(1 − ε)

(1 − ε)

(1 − ε)

(1 − ε)

• Theorem: for any (1 + ε)-fair s–t cut and vertices u, v , there
exists a (1 + ε)-approximate u–v cut that does not cross

• Proof: consider the nearly saturating flow...

s

t

u

v

(1 − ε)

(1 − ε)

(1 − ε)



Fair Cuts: Definition

• Definition: an s–t cut is (1 + ε)-fair if there exists an s → t
flow such that every edge of the cut is nearly saturated

• The flow along each cut edge in the s → t direction is at
least 1

1+ε times edge capacity

s

t

(1 − ε)

(1 − ε)

(1 − ε)

(1 − ε)

(1 − ε)

• Theorem: for any (1 + ε)-fair s–t cut and vertices u, v , there
exists a (1 + ε)-approximate u–v cut that does not cross

• Proof: consider the nearly saturating flow...

s

t

u

v

≤
(1− ε)×



Fair Cuts: Definition

• Definition: an s–t cut is (1 + ε)-fair if there exists an s → t
flow such that every edge of the cut is nearly saturated

• The flow along each cut edge in the s → t direction is at
least 1

1+ε times edge capacity

s

t

(1 − ε)

(1 − ε)

(1 − ε)

(1 − ε)

(1 − ε)

• Theorem: for any (1 + ε)-fair s–t cut and vertices u, v , there
exists a (1 + ε)-approximate u–v cut that does not cross

• Proof: consider the nearly saturating flow...

s

t

u

v

(1 + ε)



Fair Cuts: Applications
• Theorem: can compute (1 + ε)-approximate fair cuts in

Õ(m/ε3) time.



Fair Cuts: Applications
• Theorem: can compute (1 + ε)-approximate fair cuts in

Õ(m/ε3) time.
• Follows (1 + ε)-approximate mincut algorithm [Sherman’13]



Fair Cuts: Applications
• Theorem: can compute (1 + ε)-approximate fair cuts in

Õ(m/ε3) time.
• Follows (1 + ε)-approximate mincut algorithm [Sherman’13]

• Minimum Isolating Cuts: a useful primitive for graph cut
algorithms



Fair Cuts: Applications
• Theorem: can compute (1 + ε)-approximate fair cuts in

Õ(m/ε3) time.
• Follows (1 + ε)-approximate mincut algorithm [Sherman’13]

• Minimum Isolating Cuts: a useful primitive for graph cut
algorithms

• Given terminals T ⊂ V , the minimum isolating cut at
terminal t ∈ T is the minimum cut separating t from all
other terminals.



Fair Cuts: Applications
• Theorem: can compute (1 + ε)-approximate fair cuts in

Õ(m/ε3) time.
• Follows (1 + ε)-approximate mincut algorithm [Sherman’13]

• Minimum Isolating Cuts: a useful primitive for graph cut
algorithms

• Given terminals T ⊂ V , the minimum isolating cut at
terminal t ∈ T is the minimum cut separating t from all
other terminals.

• Can compute all minimum isolating cuts (one for each
terminal) in about max-flow time



Fair Cuts: Applications
• Theorem: can compute (1 + ε)-approximate fair cuts in

Õ(m/ε3) time.
• Follows (1 + ε)-approximate mincut algorithm [Sherman’13]

• Minimum Isolating Cuts: a useful primitive for graph cut
algorithms

• Given terminals T ⊂ V , the minimum isolating cut at
terminal t ∈ T is the minimum cut separating t from all
other terminals.

• Can compute all minimum isolating cuts (one for each
terminal) in about max-flow time

• What about approximate minimum isolating cuts in
approximate max-flow time?



Fair Cuts: Applications
• Theorem: can compute (1 + ε)-approximate fair cuts in

Õ(m/ε3) time.
• Follows (1 + ε)-approximate mincut algorithm [Sherman’13]

• Minimum Isolating Cuts: a useful primitive for graph cut
algorithms

• Given terminals T ⊂ V , the minimum isolating cut at
terminal t ∈ T is the minimum cut separating t from all
other terminals.

• Can compute all minimum isolating cuts (one for each
terminal) in about max-flow time

• What about approximate minimum isolating cuts in
approximate max-flow time?

• Naı̈ve approach fails because can’t uncross



Fair Cuts: Applications
• Theorem: can compute (1 + ε)-approximate fair cuts in

Õ(m/ε3) time.
• Follows (1 + ε)-approximate mincut algorithm [Sherman’13]

• Minimum Isolating Cuts: a useful primitive for graph cut
algorithms

• Given terminals T ⊂ V , the minimum isolating cut at
terminal t ∈ T is the minimum cut separating t from all
other terminals.

• Can compute all minimum isolating cuts (one for each
terminal) in about max-flow time

• What about approximate minimum isolating cuts in
approximate max-flow time?

• Naı̈ve approach fails because can’t uncross
• Fair cuts: approximate minimum isolating cuts in Õ(m) time



Fair Cuts: Applications
• Theorem: can compute (1 + ε)-approximate fair cuts in

Õ(m/ε3) time.
• Follows (1 + ε)-approximate mincut algorithm [Sherman’13]

• Minimum Isolating Cuts: a useful primitive for graph cut
algorithms

• Given terminals T ⊂ V , the minimum isolating cut at
terminal t ∈ T is the minimum cut separating t from all
other terminals.

• Can compute all minimum isolating cuts (one for each
terminal) in about max-flow time

• What about approximate minimum isolating cuts in
approximate max-flow time?

• Naı̈ve approach fails because can’t uncross
• Fair cuts: approximate minimum isolating cuts in Õ(m) time
• Following known reductions: approximate Steiner mincut,

approximate Gomory-Hu tree (all-pairs mincut) in Õ(m) time,
also parallel



Fair Cuts: Applications
• Theorem: can compute (1 + ε)-approximate fair cuts in

Õ(m/ε3) time.
• Follows (1 + ε)-approximate mincut algorithm [Sherman’13]

• Minimum Isolating Cuts: a useful primitive for graph cut
algorithms

• Given terminals T ⊂ V , the minimum isolating cut at
terminal t ∈ T is the minimum cut separating t from all
other terminals.

• Can compute all minimum isolating cuts (one for each
terminal) in about max-flow time

• What about approximate minimum isolating cuts in
approximate max-flow time?

• Naı̈ve approach fails because can’t uncross
• Fair cuts: approximate minimum isolating cuts in Õ(m) time
• Following known reductions: approximate Steiner mincut,

approximate Gomory-Hu tree (all-pairs mincut) in Õ(m) time,
also parallel

• Expander pruning in expander decomposition



Fair Cuts: Applications
• Theorem: can compute (1 + ε)-approximate fair cuts in

Õ(m/ε3) time.
• Follows (1 + ε)-approximate mincut algorithm [Sherman’13]

• Minimum Isolating Cuts: a useful primitive for graph cut
algorithms

• Given terminals T ⊂ V , the minimum isolating cut at
terminal t ∈ T is the minimum cut separating t from all
other terminals.

• Can compute all minimum isolating cuts (one for each
terminal) in about max-flow time

• What about approximate minimum isolating cuts in
approximate max-flow time?

• Naı̈ve approach fails because can’t uncross
• Fair cuts: approximate minimum isolating cuts in Õ(m) time
• Following known reductions: approximate Steiner mincut,

approximate Gomory-Hu tree (all-pairs mincut) in Õ(m) time,
also parallel

• Expander pruning in expander decomposition
• First Õ(m) time φ-expander decomposition algorithm for all

values of φ


