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Minimum Cuts and Uncrossing
• s–t mincut of an (undirected) graph: the smallest set of

edges whose removal disconnects s and t
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Minimum Cuts and Uncrossing
• s–t mincut of an (undirected) graph: the smallest set of

edges whose removal disconnects s and t
• Uncrossing property of s–t mincuts:

• for any s–t mincut and vertices u, v , there exists a u–v
mincut that does not “cross”
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Used in divide-and-conquer algorithms for Gomory-Hu tree
(all-pairs mincut): “dividing” on s–t mincut does not destroy
u–v mincut
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edges whose removal disconnects s and t
• Uncrossing property of s–t mincuts:

• for any s–t mincut and vertices u, v , there exists a u–v
mincut that does not “cross”

• Can be proved by submodularity of cuts. This talk:
flow-based proof.
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Minimum Cuts and Uncrossing

• s–t mincut of an (undirected) graph: the smallest set of
edges whose removal disconnects s and t

• Uncrossing property of s–t mincuts:
• for any s–t mincut and vertices u, v , there exists a u–v

mincut that does not “cross”
• Can be proved by submodularity of cuts. This talk:

flow-based proof.
• Suppose s–t mincut and u–v mincut cross:
• Consider a maximum s–t flow, which saturates the cut

edges by max-flow-min-cut theorem
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• Obtained a u–v cut whose size can only be smaller =⇒
also u–v mincut

• We have uncrossed the u–v mincut with the s–t mincut.



Approximate Uncrossing?

• [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva’21] s–t mincut
can be solved in m1+o(1) time—almost optimal!
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Approximate Uncrossing?

• [Chen-Kyng-Liu-Peng-Gutenberg-Sachdeva’21] s–t mincut
can be solved in m1+o(1) time—almost optimal!

• However, algorithm is very complicated
• Inherently sequential

• [Sherman’13,Peng’16] (1 + ε)-approximate s–t mincut in
Õ(m) time

• conceptually much simpler
• can be implemented in parallel

• Can approximate mincuts be uncrossed?
• Not necessarily...
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• Main obstacle to obtaining approximate Gomory-Hu tree
(all-pairs mincut) from approximate s–t mincut
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Fair Cuts: Motivation

• Let’s look at this example again:
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• Can locally improve the s–t mincut, i.e., the s–t mincut was
locally bad

• Fair cuts: s–t cuts that are nowhere locally bad, i.e.,
uniformly good

• Ideal theorem: for any (1 + ε)-fair s–t cut and vertices u, v ,
there exists a (1 + ε)-approximate u–v cut that does not
cross

• To formally define (1 + ε)-fair, we switch to flow-based
perspective again



Fair Cuts: Definition

• Definition: an s–t cut is (1 + ε)-fair if there exists an s → t
flow such that every edge of the cut is nearly saturated
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• Following known reductions: approximate Steiner mincut,
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• Expander pruning in expander decomposition
• First Õ(m) time φ-expander decomposition algorithm for all

values of φ


