The Connectivity Threshold for Dense Graphs

Jason Li (CMU)

Joint work with Anupam Gupta (CMU), Euiwoong Lee (UMichigan)

January 14, 2021

Random Graph model

• Given an unweighted, undirected graph G, suppose we sample each edge independently with probability p . What is the probability that the sampled graph G_p is connected?

- Given an unweighted, undirected graph G, suppose we sample each edge independently with probability p . What is the probability that the sampled graph G_p is connected?
	- When G is complete graph: $G(n, p)$ model

- Given an unweighted, undirected graph G, suppose we sample each edge independently with probability p . What is the probability that the sampled graph G_p is connected?
	- When G is complete graph: $G(n, p)$ model
- Connectivity threshold problem: What value of p_c s.t. Pr[connected] $\approx 1/2$?

- Given an unweighted, undirected graph G, suppose we sample each edge independently with probability p . What is the probability that the sampled graph G_p is connected?
	- When G is complete graph: $G(n, p)$ model
- Connectivity threshold problem: What value of p_c s.t. $Pr[connected] \approx 1/2?$
- Threshold width problem: Suppose p_+ s.t. Pr[conn] $= 0.99$ and $p_-\text{ s.t. } \Pr[\text{conn}] = 0.01$. Upper bound $p_+ - p_-\text{?}$

Random Graph model

- Given an unweighted, undirected graph G, suppose we sample each edge independently with probability p . What is the probability that the sampled graph G_p is connected?
	- When G is complete graph: $G(n, p)$ model
- Connectivity threshold problem: What value of p_c s.t. Pr[connected] $\approx 1/2$?
- Threshold width problem: Suppose p_+ s.t. Pr[conn] $= 0.99$ and $p_-\text{ s.t. } \Pr[\text{conn}] = 0.01$. Upper bound $p_+ - p_-\text{?}$

• Sharp threshold phenomenon (Margulis): $p_+ - p_- = o(p_c)$

Random Graph model

- Given an unweighted, undirected graph G, suppose we sample each edge independently with probability p . What is the probability that the sampled graph G_p is connected?
	- When G is complete graph: $G(n, p)$ model
- Connectivity threshold problem: What value of p_c s.t. Pr[connected] $\approx 1/2$?
- Threshold width problem: Suppose p_+ s.t. Pr[conn] $= 0.99$ and $p_-\text{ s.t. } \Pr[\text{conn}] = 0.01$. Upper bound $p_+ - p_-\text{?}$

• Sharp threshold phenomenon (Margulis): $p_+ - p_- = o(p_c)$

Random Graph model

- Given an unweighted, undirected graph G, suppose we sample each edge independently with probability p . What is the probability that the sampled graph G_p is connected?
	- When G is complete graph: $G(n, p)$ model
- Connectivity threshold problem: What value of p_c s.t. Pr[connected] $\approx 1/2$?
- Threshold width problem: Suppose p_+ s.t. Pr[conn] $= 0.99$ and $p_-\text{ s.t. } \Pr[\text{conn}] = 0.01$. Upper bound $p_+ - p_-\text{?}$

• Sharp threshold phenomenon (Margulis): $p_+ - p_- = o(p_c)$

Past work

Results

Past work

• Tight connectivity threshold and width known for

Past work

• Tight connectivity threshold and width known for

• Complete graph:
$$
p_c, p_+, p_- = \frac{\ln n}{n} \pm O(\frac{1}{n})
$$
 [Erdos,Renyi'59]

- Tight connectivity threshold and width known for
	- $\bullet \ \ \textsf{Complete graph:} \ p_c, p_+, p_- = \dfrac{\ln n}{n} \pm O\big(\dfrac{1}{n}\big) \ \textsf{[Erdos,Renyi'59]}$
	- d-dim. hypercube ($n=2^d$): p_c , $p_+, p_-=\frac{1}{2}\pm O\big(\frac{1}{\ln n}\big)$ [Bur'77]

- Tight connectivity threshold and width known for
	- $\bullet \ \ \textsf{Complete graph:} \ p_c, p_+, p_- = \dfrac{\ln n}{n} \pm O\big(\dfrac{1}{n}\big) \ \textsf{[Erdos,Renyi'59]}$
	- d-dim. hypercube ($n=2^d$): p_c , $p_+, p_-=\frac{1}{2}\pm O\big(\frac{1}{\ln n}\big)$ [Bur'77]
	- Hamming graphs, product graphs

- Tight connectivity threshold and width known for
	- $\bullet \ \ \textsf{Complete graph:} \ p_c, p_+, p_- = \dfrac{\ln n}{n} \pm O\big(\dfrac{1}{n}\big) \ \textsf{[Erdos,Renyi'59]}$
	- d-dim. hypercube ($n=2^d$): p_c , $p_+, p_-=\frac{1}{2}\pm O\big(\frac{1}{\ln n}\big)$ [Bur'77]
	- Hamming graphs, product graphs
- Threshold width for general graphs

- Tight connectivity threshold and width known for
	- $\bullet \ \ \textsf{Complete graph:} \ p_c, p_+, p_- = \dfrac{\ln n}{n} \pm O\big(\dfrac{1}{n}\big) \ \textsf{[Erdos,Renyi'59]}$
	- d-dim. hypercube ($n=2^d$): p_c , $p_+, p_-=\frac{1}{2}\pm O\big(\frac{1}{\ln n}\big)$ [Bur'77]
	- Hamming graphs, product graphs
- Threshold width for general graphs
	- Mincut λ : width $O(1/\sqrt{\lambda})$ [Margulis'74]

Past work

- Tight connectivity threshold and width known for
	- $\bullet \ \ \textsf{Complete graph:} \ p_c, p_+, p_- = \dfrac{\ln n}{n} \pm O\big(\dfrac{1}{n}\big) \ \textsf{[Erdos,Renyi'59]}$
	- d-dim. hypercube ($n=2^d$): p_c , $p_+, p_-=\frac{1}{2}\pm O\big(\frac{1}{\ln n}\big)$ [Bur'77]
	- Hamming graphs, product graphs
- Threshold width for general graphs
	- Mincut λ : width $O(1/\sqrt{\lambda})$ [Margulis'74]

Past work

- Tight connectivity threshold and width known for
	- $\bullet \ \ \textsf{Complete graph:} \ p_c, p_+, p_- = \dfrac{\ln n}{n} \pm O\big(\dfrac{1}{n}\big) \ \textsf{[Erdos,Renyi'59]}$
	- d-dim. hypercube ($n=2^d$): p_c , $p_+, p_-=\frac{1}{2}\pm O\big(\frac{1}{\ln n}\big)$ [Bur'77]
	- Hamming graphs, product graphs
- Threshold width for general graphs
	- Mincut λ : width $O(1/\sqrt{\lambda})$ [Margulis'74]

Our results

• Tight connectivity threshold for all δ -regular, δ -connected simple graphs for $\delta \gtrsim \sqrt{n}$: $\rho_c, \rho_+, \rho_- = \dfrac{\ln n}{\delta} \pm O(\dfrac{1}{\delta})$ λ

Past work

- Tight connectivity threshold and width known for
	- $\bullet \ \ \textsf{Complete graph:} \ p_c, p_+, p_- = \dfrac{\ln n}{n} \pm O\big(\dfrac{1}{n}\big) \ \textsf{[Erdos,Renyi'59]}$
	- d-dim. hypercube ($n=2^d$): p_c , $p_+, p_-=\frac{1}{2}\pm O\big(\frac{1}{\ln n}\big)$ [Bur'77]
	- Hamming graphs, product graphs
- Threshold width for general graphs
	- Mincut λ : width $O(1/\sqrt{\lambda})$ [Margulis'74]

- Tight connectivity threshold for all δ -regular, δ -connected $\textnormal{simple graphs for } \delta \gtrsim \sqrt{n} \textnormal{: } \rho_c, \rho_+, \rho_- = \dfrac{\ln n}{\delta} \pm \mathrm{O}\big(\dfrac{1}{\delta}\big)$ λ
- Threshold width of $O(\frac{\ln \lambda}{\lambda})$) for general graphs

Past work

- Tight connectivity threshold and width known for
	- $\bullet \ \ \textsf{Complete graph:} \ p_c, p_+, p_- = \dfrac{\ln n}{n} \pm O\big(\dfrac{1}{n}\big) \ \textsf{[Erdos,Renyi'59]}$
	- d-dim. hypercube ($n=2^d$): p_c , $p_+, p_-=\frac{1}{2}\pm O\big(\frac{1}{\ln n}\big)$ [Bur'77]
	- Hamming graphs, product graphs
- Threshold width for general graphs
	- Mincut λ : width $O(1/\sqrt{\lambda})$ [Margulis'74]

- Tight connectivity threshold for all δ -regular, δ -connected $\textnormal{simple graphs for } \delta \gtrsim \sqrt{n} \textnormal{: } \rho_c, \rho_+, \rho_- = \dfrac{\ln n}{\delta} \pm \mathrm{O}\big(\dfrac{1}{\delta}\big)$ λ
- Threshold width of $O(\frac{\ln \lambda}{\lambda})$) for general graphs
	- $p_c, p_+, p_- = \frac{\ln \beta}{\lambda} \pm O\left(\frac{\ln \lambda}{\lambda}\right)$) for a parameter β based on the number of approximate mincuts of the graph

Example graphs

Example graphs

Example graphs

• Barbell graph

$$
\left(\begin{array}{c}\nK_n \\
\hline\n\lambda\n\end{array}\right)
$$

• Pr[conn] \approx prob. that λ independent Bernoulli(ρ)'s all flip tails $\implies p_c \sim 1/\lambda$

Example graphs

$$
\underbrace{(K_n)\vdash K_n}_{\lambda\ll n}
$$

- Pr[conn] \approx prob. that λ independent Bernoulli(ρ)'s all flip tails $\implies p_c \sim 1/\lambda$
- λ -regular expander

Example graphs

$$
\underbrace{(K_n)\vdash K_n}_{\lambda \ll n}
$$

- Pr[conn] \approx prob. that λ independent Bernoulli(p)'s all flip tails $\implies p_c \sim 1/\lambda$
- λ -regular expander
	- only "important" cuts are the degree cuts of size λ

Example graphs

$$
\underbrace{(K_n)\vdash K_n}_{\lambda\ll n}
$$

- Pr[conn] \approx prob. that λ independent Bernoulli(p)'s all flip tails $\Rightarrow p_c \sim 1/\lambda$
- λ -regular expander
	- only "important" cuts are the degree cuts of size λ
	- \bullet n of them, they're pairwise "almost" independent

Example graphs

$$
\underbrace{(K_n)\vdash K_n}_{\lambda \ll n}
$$

- Pr[conn] \approx prob. that λ independent Bernoulli(p)'s all flip tails $\Rightarrow p_c \sim 1/\lambda$
- λ -regular expander
	- only "important" cuts are the degree cuts of size λ
	- \bullet n of them, they're pairwise "almost" independent
	- each must fail with prob. $\sim 1/n$ for union bound

Example graphs

$$
\underbrace{(K_n)\vdash K_n}_{\lambda \ll n}
$$

- Pr[conn] \approx prob. that λ independent Bernoulli(p)'s all flip tails $\Rightarrow p_c \sim 1/\lambda$
- λ -regular expander
	- only "important" cuts are the degree cuts of size λ
	- \bullet n of them, they're pairwise "almost" independent
	- each must fail with prob. $\sim 1/n$ for union bound

•
$$
p_c \sim \frac{\ln n}{\lambda}
$$
: each fails with prob. $\left(1 - \frac{\ln n}{\lambda}\right)^{\lambda} \approx e^{-\ln n} = 1/n$

Example graphs

• Barbell graph

$$
\underbrace{(K_n)\vdash K_n}_{\lambda\ll n}
$$

- Pr[conn] \approx prob. that λ independent Bernoulli(p)'s all flip tails $\Rightarrow p_c \sim 1/\lambda$
- λ -regular expander
	- only "important" cuts are the degree cuts of size λ
	- \bullet n of them, they're pairwise "almost" independent
	- each must fail with prob. $\sim 1/n$ for union bound

•
$$
p_c \sim \frac{\ln n}{\lambda}
$$
: each fails with prob. $\left(1 - \frac{\ln n}{\lambda}\right)^{\lambda} \approx e^{-\ln n} = 1/n$

• Observation: if *B* many cuts of size $\alpha\lambda$, then for $p \sim \frac{\ln B}{\alpha\lambda}$:
with constant prob., none of them fail

Our result

• Observation: if *B* many cuts of size $\alpha\lambda$, then for $p \sim \frac{\ln B}{\alpha\lambda}$:
with constant prob., none of them fail

- Observation: if B many cuts of size $\alpha\lambda$, then for $p \sim \frac{\ln B}{\alpha\lambda}$: with constant prob., none of them fail
- [This work] This is the **only** factor limiting CT!

- Observation: if B many cuts of size $\alpha\lambda$, then for $p \sim \frac{\ln B}{\alpha\lambda}$: with constant prob., none of them fail
- [This work] This is the **only** factor limiting CT!
	- Let $\beta > 0$ be the minimum s.t. G has at most $e^{\beta \alpha}$ many α -mincuts for every $\alpha \geq 1$. Then,

$$
p_c, p_+, p_- = 1 - e^{-\beta/\lambda} \pm O\big(\frac{\ln \lambda}{\lambda}\big).
$$

Our result

- Observation: if B many cuts of size $\alpha\lambda$, then for $p \sim \frac{\ln B}{\alpha\lambda}$: with constant prob., none of them fail
- [This work] This is the only factor limiting CT!
	- Let $\beta > 0$ be the minimum s.t. G has at most $e^{\beta \alpha}$ many α -mincuts for every $\alpha \geq 1$. Then,

$$
p_c, p_+, p_- = 1 - e^{-\beta/\lambda} \pm O\big(\frac{\ln \lambda}{\lambda}\big).
$$

• "Union bound over approx. mincuts is almost tight for CT"

Our result

- Observation: if B many cuts of size $\alpha\lambda$, then for $p \sim \frac{\ln B}{\alpha\lambda}$: with constant prob., none of them fail
- [This work] This is the only factor limiting CT!
	- Let $\beta > 0$ be the minimum s.t. G has at most $e^{\beta \alpha}$ many α -mincuts for every $\alpha \geq 1$. Then,

$$
p_c, p_+, p_- = 1 - e^{-\beta/\lambda} \pm O\big(\frac{\ln \lambda}{\lambda}\big).
$$

• "Union bound over approx. mincuts is almost tight for CT"

• Threshold width of
$$
O(\frac{\ln \lambda}{\lambda})
$$

Our result

- Observation: if B many cuts of size $\alpha\lambda$, then for $p \sim \frac{\ln B}{\alpha\lambda}$: with constant prob., none of them fail
- [This work] This is the only factor limiting CT!
	- Let $\beta > 0$ be the minimum s.t. G has at most $e^{\beta \alpha}$ many α -mincuts for every $\alpha \geq 1$. Then,

$$
p_c, p_+, p_- = 1 - e^{-\beta/\lambda} \pm O\big(\frac{\ln \lambda}{\lambda}\big).
$$

• "Union bound over approx. mincuts is almost tight for CT"

• Threshold width of
$$
O(\frac{\ln \lambda}{\lambda})
$$

Example graphs

Our result

- Observation: if B many cuts of size $\alpha\lambda$, then for $p \sim \frac{\ln B}{\alpha\lambda}$: with constant prob., none of them fail
- [This work] This is the only factor limiting CT!
	- Let $\beta > 0$ be the minimum s.t. G has at most $e^{\beta \alpha}$ many α -mincuts for every $\alpha \geq 1$. Then,

$$
p_c, p_+, p_- = 1 - e^{-\beta/\lambda} \pm O\left(\frac{\ln \lambda}{\lambda}\right).
$$

• "Union bound over approx. mincuts is almost tight for CT"

• Threshold width of
$$
O(\frac{\ln \lambda}{\lambda})
$$

Example graphs

• Complete graph: $\beta = \ln n$, $p_c = 1 - e^{-\ln n/n} \approx \frac{\ln n}{n}$

Our result

- Observation: if B many cuts of size $\alpha\lambda$, then for $p \sim \frac{\ln B}{\alpha\lambda}$: with constant prob., none of them fail
- [This work] This is the only factor limiting CT!
	- Let $\beta > 0$ be the minimum s.t. G has at most $e^{\beta \alpha}$ many α -mincuts for every $\alpha \geq 1$. Then,

$$
p_c, p_+, p_- = 1 - e^{-\beta/\lambda} \pm O\left(\frac{\ln \lambda}{\lambda}\right).
$$

• "Union bound over approx. mincuts is almost tight for CT"

• Threshold width of
$$
O(\frac{\ln \lambda}{\lambda})
$$

Example graphs

- Complete graph: $\beta = \ln n$, $p_c = 1 e^{-\ln n/n} \approx \frac{\ln n}{n}$
- d-dim. hypercube $(n = 2^d)$: $\beta = \ln n = d \ln 2$, $p_c = 1 - e^{-(d \ln 2)/d} = 1/2$

Proof Outline

Proof Outline

(1) Thm [Few Small Cuts \implies Connectivity]: Let $\beta > 0$ s.t. G has at most $e^{\beta \alpha}$ many α -mincuts for every $\alpha \ge 1$. Then for any constant $\epsilon \in (0,1)$ and

$$
p=1-\text{exp}\left(\frac{\beta+\text{ln} \lceil \beta \rceil+O(1)}{\lambda}\right),
$$

Proof Outline

(1) Thm [Few Small Cuts \implies Connectivity]: Let $\beta > 0$ s.t. G has at most $e^{\beta \alpha}$ many α -mincuts for every $\alpha \ge 1$. Then for any constant $\epsilon \in (0,1)$ and

$$
p=1-\text{exp}\left(\frac{\beta+\text{ln} \lceil \beta \rceil+O(1)}{\lambda}\right),
$$

the sampled graph is connected with prob. $\geq 1 - \epsilon$.

• Proof: standard union bound over all α -mincuts and all α

Proof Outline

(1) Thm [Few Small Cuts \implies Connectivity]: Let $\beta > 0$ s.t. G has at most $e^{\beta \alpha}$ many α -mincuts for every $\alpha \ge 1$. Then for any constant $\epsilon \in (0, 1)$ and

$$
p=1-\text{exp}\left(\frac{\beta+\text{ln} \lceil \beta \rceil+O(1)}{\lambda}\right),
$$

the sampled graph is connected with prob. $\geq 1 - \epsilon$.

(2) Thm [Connectivity \implies Few Small Cuts]: For any $\beta > 0$ and $p = 1 - \exp(\beta/\lambda)$, if Pr $[G_p \text{ conn}] \geq \epsilon$, then for all $\alpha \geq 1$, there are at most $\mathsf{O}(\mathsf{e}^{\beta\alpha + \mathsf{O}(\alpha \ln\lceil \beta \rceil)})$ many α -mincuts

Proof Outline

(1) Thm [Few Small Cuts \implies Connectivity]: Let $\beta > 0$ s.t. G has at most $e^{\beta \alpha}$ many α -mincuts for every $\alpha \ge 1$. Then for any constant $\epsilon \in (0,1)$ and

$$
p=1-exp\left(\frac{\beta + ln[\beta] + O(1)}{\lambda}\right),
$$

- (2) Thm [Connectivity \implies Few Small Cuts]: For any $\beta > 0$ and $p = 1 - \exp(\beta/\lambda)$, if Pr[G_p conn] $\geq \epsilon$, then for all $\alpha \geq 1$, there are at most $\mathsf{O}(\mathsf{e}^{\beta\alpha + \mathsf{O}(\alpha \ln\lceil \beta \rceil)})$ many α -mincuts
	- Proof inspired by Karger-Stein's randomized contraction algorithm

Proof Outline

(1) Thm [Few Small Cuts \implies Connectivity]: Let $\beta > 0$ s.t. G has at most $e^{\beta \alpha}$ many α -mincuts for every $\alpha \ge 1$. Then for any constant $\epsilon \in (0,1)$ and

$$
p=1-exp\left(\frac{\beta + ln[\beta] + O(1)}{\lambda}\right),
$$

- (2) Thm [Connectivity \implies Few Small Cuts]: For any $\beta > 0$ and $p = 1 - \exp(\beta/\lambda)$, if Pr[G_p conn] $\geq \epsilon$, then for all $\alpha \geq 1$, there are at most $\mathsf{O}(\mathsf{e}^{\beta\alpha + \mathsf{O}(\alpha \ln\lceil \beta \rceil)})$ many α -mincuts
	- Let $\beta > 0$ be the minimum s.t. (1) holds. Let $\beta' = \beta \ln[\beta]$ s.t. $O(e^{\beta' \alpha + O(\alpha \ln \lceil \beta' \rceil)})$ from (2) is less than $e^{\beta \alpha}.$ But G has $e^{\beta \alpha}$ many α -mincuts for some α , so statement in (2) is false, and Pr $[\mathsf{G}_{p'}$ conn $]<\epsilon$ for $p'=1-\exp(\beta'/\lambda)$

Proof Outline

(1) Thm [Few Small Cuts \implies Connectivity]: Let $\beta > 0$ s.t. G has at most $e^{\beta \alpha}$ many α -mincuts for every $\alpha \ge 1$. Then for any constant $\epsilon \in (0,1)$ and

$$
p=1-exp\left(\frac{\beta + ln[\beta] + O(1)}{\lambda}\right),
$$

- (2) Thm [Connectivity \implies Few Small Cuts]: For any $\beta > 0$ and $p = 1 - \exp(\beta/\lambda)$, if Pr[G_p conn] $\geq \epsilon$, then for all $\alpha \geq 1$, there are at most $\mathsf{O}(\mathsf{e}^{\beta\alpha + \mathsf{O}(\alpha \ln\lceil \beta \rceil)})$ many α -mincuts
	- Let $\beta > 0$ be the minimum s.t. (1) holds. Let $\beta' = \beta \ln[\beta]$ s.t. $O(e^{\beta' \alpha + O(\alpha \ln \lceil \beta' \rceil)})$ from (2) is less than $e^{\beta \alpha}.$ But G has $e^{\beta \alpha}$ many α -mincuts for some α , so statement in (2) is false, and Pr $[G_{p'} \; \mathsf{conn}] < \epsilon \; \mathsf{for} \; p' = \mathsf{1} - \mathsf{exp}(\beta'/\lambda)$
	- So $p_+, p_- = 1 \exp\big(\frac{\beta \pm O(\ln \lceil \beta \rceil)}{\lambda}\big)$. Some more work to get additive $\pm O((\ln \lambda)/\lambda)$ K ロ K K d K K B X X B X X X X X X X D X C

CT for Dense, Well-Connected Graphs Our result

Our result

• Tight connectivity threshold for all δ -regular, δ -connected simple graphs for $\delta \gtrsim \sqrt{n}$: $\rho_c, \rho_+, \rho_- = \dfrac{\ln n}{\delta} \pm O(\dfrac{1}{\delta})$ λ

- Tight connectivity threshold for all δ -regular, δ -connected simple graphs for $\delta \gtrsim \sqrt{n}$: $\rho_c, \rho_+, \rho_- = \dfrac{\ln n}{\delta} \pm O(\dfrac{1}{\delta})$ λ
- All three conditions (δ -regular, δ -connected, $\delta \geq \sqrt{\eta}$) are necessary!

$$
\begin{array}{ccc}\n\kappa_n & \kappa_n & \kappa_n \\
\hline\n\lambda & & n\n\end{array}
$$

- Tight connectivity threshold for all δ -regular, δ -connected simple graphs for $\delta \gtrsim \sqrt{n}$: $\rho_c, \rho_+, \rho_- = \dfrac{\ln n}{\delta} \pm O(\dfrac{1}{\delta})$ λ
- All three conditions (δ -regular, δ -connected, $\delta \geq \sqrt{\eta}$) are necessary!
- Main tool: Kawarabayashi-Thorup graph decomposition [KT'18]

- Tight connectivity threshold for all δ -regular, δ -connected simple graphs for $\delta \gtrsim \sqrt{n}$: $\rho_c, \rho_+, \rho_- = \dfrac{\ln n}{\delta} \pm O(\dfrac{1}{\delta})$ λ
- All three conditions (δ -regular, δ -connected, $\delta \geq \sqrt{\eta}$) are necessary!
- Main tool: Kawarabayashi-Thorup graph decomposition [KT'18]
	- Structural representation of all α -mincuts based on decomp.

- Tight connectivity threshold for all δ -regular, δ -connected simple graphs for $\delta \gtrsim \sqrt{n}$: $\rho_c, \rho_+, \rho_- = \dfrac{\ln n}{\delta} \pm O(\dfrac{1}{\delta})$ λ
- All three conditions (δ -regular, δ -connected, $\delta \geq \sqrt{n}$) are necessary!
- Main tool: Kawarabayashi-Thorup graph decomposition [KT'18]
	- Structural representation of all α -mincuts based on decomp.
- Thm: for any simple graph with minimum degree $\geq \sqrt{n}$, the number of α -mincuts is at most $\tilde{O}(n)^\alpha$ for all $\alpha \ge 1$

- Tight connectivity threshold for all δ -regular, δ -connected simple graphs for $\delta \gtrsim \sqrt{n}$: $\rho_c, \rho_+, \rho_- = \dfrac{\ln n}{\delta} \pm O(\dfrac{1}{\delta})$ λ
- All three conditions (δ -regular, δ -connected, $\delta \geq \sqrt{n}$) are necessary!
- Main tool: Kawarabayashi-Thorup graph decomposition [KT'18]
	- Structural representation of all α -mincuts based on decomp.
- Thm: for any simple graph with minimum degree $\geq \sqrt{n}$, the number of α -mincuts is at most $\tilde{O}(n)^\alpha$ for all $\alpha \ge 1$
	- $\bullet \implies \beta \approx \ln n$ for δ -regular, δ -connected, $\delta \geq \sqrt{n}$ and $\rho_c, \rho_+, \rho_- = \frac{\ln n}{\delta} \pm O\left(\frac{\ln \ln n}{\delta}\right)$ λ

- Tight connectivity threshold for all δ -regular, δ -connected simple graphs for $\delta \gtrsim \sqrt{n}$: $\rho_c, \rho_+, \rho_- = \dfrac{\ln n}{\delta} \pm O(\dfrac{1}{\delta})$ λ
- All three conditions (δ -regular, δ -connected, $\delta \geq \sqrt{n}$) are necessary!
- Main tool: Kawarabayashi-Thorup graph decomposition [KT'18]
	- Structural representation of all α -mincuts based on decomp.
- Thm: for any simple graph with minimum degree $\geq \sqrt{n}$, the number of α -mincuts is at most $\tilde{O}(n)^\alpha$ for all $\alpha \ge 1$
	- $\bullet \implies \beta \approx \ln n$ for δ -regular, δ -connected, $\delta \geq \sqrt{n}$ and $\rho_c, \rho_+, \rho_- = \frac{\ln n}{\delta} \pm O\left(\frac{\ln \ln n}{\delta}\right)$ λ
- To get $\frac{\ln n}{\delta} \pm O(\frac{1}{\delta})$), open box of KT graph decomp.

- Tight connectivity threshold for all δ -regular, δ -connected simple graphs for $\delta \gtrsim \sqrt{n}$: $\rho_c, \rho_+, \rho_- = \dfrac{\ln n}{\delta} \pm O(\dfrac{1}{\delta})$ λ
- All three conditions (δ -regular, δ -connected, $\delta \geq \sqrt{n}$) are necessary!
- Main tool: Kawarabayashi-Thorup graph decomposition [KT'18]
	- Structural representation of all α -mincuts based on decomp.
- Thm: for any simple graph with minimum degree $\geq \sqrt{n}$, the number of α -mincuts is at most $\tilde{O}(n)^\alpha$ for all $\alpha \geq 1$
	- $\bullet \implies \beta \approx \ln n$ for δ -regular, δ -connected, $\delta \geq \sqrt{n}$ and $\rho_c, \rho_+, \rho_- = \frac{\ln n}{\delta} \pm O\left(\frac{\ln \ln n}{\delta}\right)$ λ
- To get $\frac{\ln n}{\delta} \pm O(\frac{1}{\delta})$), open box of KT graph decomp.
- For $p = \frac{\ln n + c}{\delta}$, Pr[conn] = $e^{-e^{-c}} \pm o(1)$, generalizing Erdos-Renyi for the complete graph

Open questions

• Conjecture: threshold width is $O(1/\lambda)$ for all graphs

- Conjecture: threshold width is $O(1/\lambda)$ for all graphs
	- Need to tighten union bound over all α -mincuts; techniques could see other applications

- Conjecture: threshold width is $O(1/\lambda)$ for all graphs
	- Need to tighten union bound over all α -mincuts; techniques could see other applications
	- Parameter β only depends on the "worst" α ; may need to look at all values of α

- Conjecture: threshold width is $O(1/\lambda)$ for all graphs
	- Need to tighten union bound over all α -mincuts; techniques could see other applications
	- Parameter β only depends on the "worst" α ; may need to look at all values of α
- \bullet β is difficult to compute; is there a more efficiently computable substitute for β ?

- Conjecture: threshold width is $O(1/\lambda)$ for all graphs
	- Need to tighten union bound over all α -mincuts; techniques could see other applications
	- Parameter β only depends on the "worst" α ; may need to look at all values of α
- β is difficult to compute; is there a more efficiently computable substitute for β ?
	- Related to the network (un)reliability problem: given p , compute the approximate probability of connectivity