The Connectivity Threshold for Dense Graphs

Jason Li (CMU)

Joint work with Anupam Gupta (CMU), Euiwoong Lee (UMichigan)

January 14, 2021

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Random Graph model

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 の Q @

Random Graph model

 Given an unweighted, undirected graph *G*, suppose we sample each edge independently with probability *p*.
 What is the probability that the sampled graph *G_p* is connected?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Random Graph model

- Given an unweighted, undirected graph *G*, suppose we sample each edge independently with probability *p*.
 What is the probability that the sampled graph *G*_p is connected?
 - When G is complete graph: G(n, p) model

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Random Graph model

- Given an unweighted, undirected graph *G*, suppose we sample each edge independently with probability *p*.
 What is the probability that the sampled graph *G*_p is connected?
 - When G is complete graph: G(n, p) model
- <u>Connectivity threshold problem</u>: What value of p_c s.t. Pr[connected] $\approx 1/2$?

Random Graph model

- Given an unweighted, undirected graph *G*, suppose we sample each edge independently with probability *p*. What is the probability that the sampled graph *G*_p is connected?
 - When G is complete graph: G(n, p) model
- <u>Connectivity threshold problem</u>: What value of p_c s.t. Pr[connected] $\approx 1/2$?
- <u>Threshold width problem</u>: Suppose p_+ s.t. Pr[conn] = 0.99 and p_- s.t. Pr[conn] = 0.01. Upper bound $p_+ - p_-$?

Random Graph model

- Given an unweighted, undirected graph *G*, suppose we sample each edge independently with probability *p*. What is the probability that the sampled graph *G*_p is connected?
 - When G is complete graph: G(n, p) model
- <u>Connectivity threshold problem</u>: What value of p_c s.t. Pr[connected] $\approx 1/2$?
- <u>Threshold width problem</u>: Suppose p_+ s.t. Pr[conn] = 0.99 and p_- s.t. Pr[conn] = 0.01. Upper bound $p_+ - p_-$?

• Sharp threshold phenomenon (Margulis): $p_+ - p_- = o(p_c)$

Random Graph model

- Given an unweighted, undirected graph *G*, suppose we sample each edge independently with probability *p*. What is the probability that the sampled graph *G*_p is connected?
 - When G is complete graph: G(n, p) model
- <u>Connectivity threshold problem</u>: What value of p_c s.t. Pr[connected] $\approx 1/2$?
- <u>Threshold width problem</u>: Suppose p_+ s.t. Pr[conn] = 0.99 and p_- s.t. Pr[conn] = 0.01. Upper bound $p_+ - p_-$?

• Sharp threshold phenomenon (Margulis): $p_+ - p_- = o(p_c)$

Random Graph model

- Given an unweighted, undirected graph *G*, suppose we sample each edge independently with probability *p*. What is the probability that the sampled graph *G*_p is connected?
 - When G is complete graph: G(n, p) model
- <u>Connectivity threshold problem</u>: What value of p_c s.t. Pr[connected] $\approx 1/2$?
- <u>Threshold width problem</u>: Suppose p_+ s.t. Pr[conn] = 0.99 and p_- s.t. Pr[conn] = 0.01. Upper bound $p_+ - p_-$?

• Sharp threshold phenomenon (Margulis): $p_+ - p_- = o(p_c)$

Past work

Past work

• Tight connectivity threshold and width known for

Past work

• Tight connectivity threshold and width known for

• Complete graph:
$$p_c, p_+, p_- = \frac{\ln n}{n} \pm O(\frac{1}{n})$$
 [Erdos,Renyi'59]

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Past work

• Tight connectivity threshold and width known for

• Complete graph:
$$p_c, p_+, p_- = \frac{\ln n}{n} \pm O(\frac{1}{n})$$
 [Erdos, Renyi'59]

• *d*-dim. hypercube
$$(n = 2^d)$$
: $p_c, p_+, p_- = \frac{1}{2} \pm O(\frac{1}{\ln n})$ [Bur'77]

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Past work

- Tight connectivity threshold and width known for
 - Complete graph: $p_c, p_+, p_- = \frac{\ln n}{n} \pm O(\frac{1}{n})$ [Erdos,Renyi'59]

• *d*-dim. hypercube
$$(n = 2^d)$$
: $p_c, p_+, p_- = \frac{1}{2} \pm O(\frac{1}{\ln n})$ [Bur'77]

Hamming graphs, product graphs

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Past work

- Tight connectivity threshold and width known for
 - Complete graph: $p_c, p_+, p_- = \frac{\ln n}{n} \pm O(\frac{1}{n})$ [Erdos,Renyi'59]

• *d*-dim. hypercube
$$(n = 2^d)$$
: $p_c, p_+, p_- = \frac{1}{2} \pm O(\frac{1}{\ln n})$ [Bur'77]

- Hamming graphs, product graphs
- Threshold width for general graphs

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Past work

- Tight connectivity threshold and width known for
 - Complete graph: $p_c, p_+, p_- = \frac{\ln n}{n} \pm O(\frac{1}{n})$ [Erdos,Renyi'59]

• *d*-dim. hypercube
$$(n = 2^d)$$
: $p_c, p_+, p_- = \frac{1}{2} \pm O(\frac{1}{\ln n})$ [Bur'77]

- Hamming graphs, product graphs
- Threshold width for general graphs
 - Mincut λ : width $O(1/\sqrt{\lambda})$ [Margulis'74]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Past work

- Tight connectivity threshold and width known for
 - Complete graph: $p_c, p_+, p_- = \frac{\ln n}{n} \pm O(\frac{1}{n})$ [Erdos,Renyi'59]

• *d*-dim. hypercube
$$(n = 2^d)$$
: $p_c, p_+, p_- = \frac{1}{2} \pm O(\frac{1}{\ln n})$ [Bur'77]

- Hamming graphs, product graphs
- Threshold width for general graphs
 - Mincut λ : width $O(1/\sqrt{\lambda})$ [Margulis'74]

Our results

A D > 4 回 > 4 回 > 4 回 > 1 の Q Q

Past work

- Tight connectivity threshold and width known for
 - Complete graph: $p_c, p_+, p_- = \frac{\ln n}{n} \pm O(\frac{1}{n})$ [Erdos,Renyi'59]

• *d*-dim. hypercube
$$(n = 2^d)$$
: $p_c, p_+, p_- = \frac{1}{2} \pm O(\frac{1}{\ln n})$ [Bur'77]

- Hamming graphs, product graphs
- Threshold width for general graphs
 - Mincut λ : width $O(1/\sqrt{\lambda})$ [Margulis'74]

Our results

• Tight connectivity threshold for all $\underline{\delta}$ -regular, $\underline{\delta}$ -connected simple graphs for $\underline{\delta} \ge \sqrt{n}$: $p_c, p_+, p_- = \frac{\ln n}{\delta} \pm O(\frac{1}{\delta})$

Past work

- Tight connectivity threshold and width known for
 - Complete graph: $p_c, p_+, p_- = \frac{\ln n}{n} \pm O(\frac{1}{n})$ [Erdos,Renyi'59]

• *d*-dim. hypercube
$$(n = 2^d)$$
: $p_c, p_+, p_- = \frac{1}{2} \pm O(\frac{1}{\ln n})$ [Bur'77]

- Hamming graphs, product graphs
- Threshold width for general graphs
 - Mincut λ : width $O(1/\sqrt{\lambda})$ [Margulis'74]

Our results

Tight connectivity threshold for all δ-regular, δ-connected simple graphs for δ ≥ √n: p_c, p₊, p₋ = ln n / δ ± O(1/δ)
 Threshold width of O(ln λ) for general graphs

Past work

- Tight connectivity threshold and width known for
 - Complete graph: $p_c, p_+, p_- = \frac{\ln n}{n} \pm O(\frac{1}{n})$ [Erdos,Renyi'59]

• *d*-dim. hypercube
$$(n = 2^d)$$
: $p_c, p_+, p_- = \frac{1}{2} \pm O(\frac{1}{\ln n})$ [Bur'77]

- Hamming graphs, product graphs
- Threshold width for general graphs
 - Mincut λ : width $O(1/\sqrt{\lambda})$ [Margulis'74]

Our results

- Tight connectivity threshold for all $\underline{\delta}$ -regular, $\underline{\delta}$ -connected simple graphs for $\underline{\delta} \ge \sqrt{n}$: $p_c, p_+, p_- = \frac{\ln n}{\delta} \pm O(\frac{1}{\delta})$
- Threshold width of $O(\frac{\ln \lambda}{\lambda})$ for general graphs
 - $p_c, p_+, p_- = \frac{\ln \beta}{\lambda} \pm O(\frac{\ln \lambda}{\lambda})$ for a parameter β based on the <u>number of approximate mincuts of the graph</u>

Example graphs

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

Example graphs

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Example graphs

Barbell graph

• $\Pr[\text{conn}] \approx \text{prob. that } \lambda \text{ independent Bernoulli}(p)$'s all flip tails $\implies p_c \sim 1/\lambda$

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

Example graphs

- $\Pr[\text{conn}] \approx \text{prob. that } \lambda \text{ independent Bernoulli}(p)$'s all flip tails $\implies p_c \sim 1/\lambda$
- λ-regular expander

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

Example graphs

- $\Pr[\text{conn}] \approx \text{prob. that } \lambda \text{ independent Bernoulli}(p)'s all flip tails \implies p_c \sim 1/\lambda$
- λ-regular expander
 - only "important" cuts are the degree cuts of size $\boldsymbol{\lambda}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Example graphs

- $\Pr[\text{conn}] \approx \text{prob. that } \lambda \text{ independent Bernoulli}(p)'s all flip tails \implies p_c \sim 1/\lambda$
- λ-regular expander
 - only "important" cuts are the degree cuts of size λ
 - *n* of them, they're pairwise "almost" independent

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

Example graphs

- $\Pr[\text{conn}] \approx \text{prob. that } \lambda \text{ independent Bernoulli}(p)'s all flip tails \implies p_c \sim 1/\lambda$
- λ-regular expander
 - only "important" cuts are the degree cuts of size λ
 - n of them, they're pairwise "almost" independent
 - each must fail with prob. $\sim 1/n$ for union bound

Example graphs

Barbell graph

- $\Pr[\text{conn}] \approx \text{prob. that } \lambda \text{ independent Bernoulli}(p)$'s all flip tails $\implies p_c \sim 1/\lambda$
- λ-regular expander
 - only "important" cuts are the degree cuts of size λ
 - n of them, they're pairwise "almost" independent
 - each must fail with prob. $\sim 1/n$ for union bound

•
$$p_c \sim \frac{\ln n}{\lambda}$$
: each fails with prob. $\left(1 - \frac{\ln n}{\lambda}\right)^{\lambda} \approx e^{-\ln n} = 1/n$

▲□▶▲□▶▲□▶▲□▶ □ クタペ

Example graphs

Barbell graph

- $\Pr[\text{conn}] \approx \text{prob. that } \lambda \text{ independent Bernoulli}(p)'s all flip tails \implies p_c \sim 1/\lambda$
- λ-regular expander
 - only "important" cuts are the degree cuts of size λ
 - n of them, they're pairwise "almost" independent
 - each must fail with prob. $\sim 1/n$ for union bound

•
$$p_c \sim \frac{\ln n}{\lambda}$$
: each fails with prob. $\left(1 - \frac{\ln n}{\lambda}\right)^{\lambda} \approx e^{-\ln n} = 1/n$

• Observation: if *B* many cuts of size $\alpha\lambda$, then for $p \sim \frac{\ln B}{\alpha\lambda}$: with constant prob., none of them fail

Our result

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < つへぐ

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Our result

• Observation: if *B* many cuts of size $\alpha\lambda$, then for $p \sim \frac{\ln B}{\alpha\lambda}$: with constant prob., none of them fail

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

Our result

- Observation: if *B* many cuts of size $\alpha\lambda$, then for $p \sim \frac{\ln B}{\alpha\lambda}$: with constant prob., none of them fail
- [This work] This is the only factor limiting CT!

Our result

- Observation: if *B* many cuts of size $\alpha\lambda$, then for $p \sim \frac{\ln B}{\alpha\lambda}$: with constant prob., none of them fail
- [This work] This is the only factor limiting CT!
 - Let $\beta > 0$ be the minimum s.t. G has at most $e^{\beta \alpha}$ many α -mincuts for every $\alpha \ge 1$. Then,

$$oldsymbol{
ho}_c, oldsymbol{
ho}_+, oldsymbol{
ho}_- = \mathbf{1} - \mathbf{e}^{-eta/\lambda} \pm \mathsf{O}ig(rac{\ln\lambda}{\lambda}ig).$$

▲□▶▲□▶▲□▶▲□▶ □ クタペ

Our result

- Observation: if *B* many cuts of size $\alpha\lambda$, then for $p \sim \frac{\ln B}{\alpha\lambda}$: with constant prob., none of them fail
- [This work] This is the only factor limiting CT!
 - Let β > 0 be the minimum s.t. G has at most e^{βα} many α-mincuts for every α ≥ 1. Then,

$$p_c, p_+, p_- = 1 - e^{-eta/\lambda} \pm O(rac{\ln\lambda}{\lambda}).$$

▲□▶▲□▶▲□▶▲□▶ □ クタペ

• "Union bound over approx. mincuts is almost tight for CT"

Our result

- Observation: if *B* many cuts of size $\alpha\lambda$, then for $p \sim \frac{\ln B}{\alpha\lambda}$: with constant prob., none of them fail
- [This work] This is the only factor limiting CT!
 - Let β > 0 be the minimum s.t. G has at most e^{βα} many α-mincuts for every α ≥ 1. Then,

$$p_c, p_+, p_- = 1 - e^{-eta/\lambda} \pm Oig(rac{\ln\lambda}{\lambda}ig).$$

▲□▶▲□▶▲□▶▲□▶ □ クタペ

- "Union bound over approx. mincuts is almost tight for CT"
- Threshold width of $O(\frac{\ln \lambda}{\lambda})$

Our result

- Observation: if *B* many cuts of size $\alpha\lambda$, then for $p \sim \frac{\ln B}{\alpha\lambda}$: with constant prob., none of them fail
- [This work] This is the only factor limiting CT!
 - Let β > 0 be the minimum s.t. G has at most e^{βα} many α-mincuts for every α ≥ 1. Then,

$$p_c, p_+, p_- = 1 - e^{-eta/\lambda} \pm Oig(rac{\ln\lambda}{\lambda}ig).$$

- "Union bound over approx. mincuts is almost tight for CT"
- Threshold width of $O(\frac{\ln \lambda}{\lambda})$

Example graphs

Our result

- Observation: if *B* many cuts of size $\alpha\lambda$, then for $p \sim \frac{\ln B}{\alpha\lambda}$: with constant prob., none of them fail
- [This work] This is the only factor limiting CT!
 - Let β > 0 be the minimum s.t. G has at most e^{βα} many α-mincuts for every α ≥ 1. Then,

$$p_c, p_+, p_- = 1 - e^{-eta/\lambda} \pm Oig(rac{\ln\lambda}{\lambda}ig).$$

- "Union bound over approx. mincuts is almost tight for CT"
- Threshold width of $O(\frac{\ln \lambda}{\lambda})$

Example graphs

• Complete graph:
$$\beta = \ln n$$
, $p_c = 1 - e^{-\ln n/n} \approx \frac{\ln n}{n}$

Our result

- Observation: if *B* many cuts of size $\alpha\lambda$, then for $p \sim \frac{\ln B}{\alpha\lambda}$: with constant prob., none of them fail
- [This work] This is the only factor limiting CT!
 - Let β > 0 be the minimum s.t. G has at most e^{βα} many α-mincuts for every α ≥ 1. Then,

$$p_c, p_+, p_- = 1 - e^{-eta/\lambda} \pm Oig(rac{\ln\lambda}{\lambda}ig).$$

- "Union bound over approx. mincuts is almost tight for CT"
- Threshold width of $O(\frac{\ln \lambda}{\lambda})$

Example graphs

- Complete graph: $\beta = \ln n$, $p_c = 1 e^{-\ln n/n} \approx \frac{\ln n}{n}$
- *d*-dim. hypercube $(n = 2^d)$: $\beta = \ln n = d \ln 2$, $p_c = 1 - e^{-(d \ln 2)/d} = 1/2$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣�(♡

Proof Outline

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Proof Outline

Thm [Few Small Cuts ⇒ Connectivity]: Let β > 0 s.t. G has at most e^{βα} many α-mincuts for every α ≥ 1. Then for any constant ϵ ∈ (0, 1) and

$$oldsymbol{
ho} = \mathbf{1} - \exp\left(rac{eta + \ln \lceil eta
ceil + O(1)}{\lambda}
ight),$$

the sampled graph is connected with prob. $\geq 1 - \epsilon$.

▲□▶▲□▶▲□▶▲□▶ □ クタペ

Proof Outline

Thm [Few Small Cuts ⇒ Connectivity]: Let β > 0 s.t. G has at most e^{βα} many α-mincuts for every α ≥ 1. Then for any constant ϵ ∈ (0, 1) and

$$p = 1 - \exp\left(rac{eta + \ln \lceil eta
ceil + O(1)}{\lambda}
ight),$$

the sampled graph is connected with prob. $\geq 1 - \epsilon$.

• Proof: standard union bound over all $\alpha\text{-mincuts}$ and all α

Proof Outline

Thm [Few Small Cuts ⇒ Connectivity]: Let β > 0 s.t. G has at most e^{βα} many α-mincuts for every α ≥ 1. Then for any constant ϵ ∈ (0, 1) and

$$p = 1 - \exp\left(rac{eta + \ln \lceil eta
ceil + O(1)}{\lambda}
ight),$$

the sampled graph is connected with prob. $\geq 1 - \epsilon$.

(2) Thm [Connectivity ⇒ Few Small Cuts]: For any β > 0 and p = 1 - exp(β/λ), if Pr[G_p conn] ≥ ϵ, then for all α ≥ 1, there are at most O(e^{βα+O(α ln[β])}) many α-mincuts

Proof Outline

Thm [Few Small Cuts ⇒ Connectivity]: Let β > 0 s.t. G has at most e^{βα} many α-mincuts for every α ≥ 1. Then for any constant ϵ ∈ (0, 1) and

$$p = 1 - \exp\left(rac{eta + \ln \lceil eta
ceil + O(1)}{\lambda}
ight),$$

the sampled graph is connected with prob. $\geq 1 - \epsilon$.

- (2) Thm [Connectivity ⇒ Few Small Cuts]: For any β > 0 and p = 1 - exp(β/λ), if Pr[G_p conn] ≥ ε, then for all α ≥ 1, there are at most O(e^{βα+O(α ln[β])}) many α-mincuts
 - Proof inspired by Karger-Stein's randomized contraction algorithm

Proof Outline

Thm [Few Small Cuts ⇒ Connectivity]: Let β > 0 s.t. G has at most e^{βα} many α-mincuts for every α ≥ 1. Then for any constant ϵ ∈ (0, 1) and

$$p = 1 - \exp\left(\frac{\beta + \ln\lceil\beta\rceil + O(1)}{\lambda}
ight),$$

the sampled graph is connected with prob. $\geq 1 - \epsilon$.

- (2) Thm [Connectivity ⇒ Few Small Cuts]: For any β > 0 and p = 1 - exp(β/λ), if Pr[G_p conn] ≥ ε, then for all α ≥ 1, there are at most O(e^{βα+O(α ln[β])}) many α-mincuts
 - Let β > 0 be the minimum s.t. (1) holds. Let β' = β − ln[β] s.t. O(e^{β'α+O(α ln[β'])}) from (2) is less than e^{βα}. But G has e^{βα} many α-mincuts for some α, so statement in (2) is false, and Pr[G_{p'} conn] < ε for p' = 1 − exp(β'/λ)

Proof Outline

Thm [Few Small Cuts ⇒ Connectivity]: Let β > 0 s.t. G has at most e^{βα} many α-mincuts for every α ≥ 1. Then for any constant ϵ ∈ (0, 1) and

$$p = 1 - \exp\left(rac{eta + \ln \lceil eta
ceil + O(1)}{\lambda}
ight),$$

the sampled graph is connected with prob. $\geq 1 - \epsilon$.

- (2) Thm [Connectivity ⇒ Few Small Cuts]: For any β > 0 and p = 1 - exp(β/λ), if Pr[G_p conn] ≥ ϵ, then for all α ≥ 1, there are at most O(e^{βα+O(α ln[β])}) many α-mincuts
 - Let $\beta > 0$ be the minimum s.t. (1) holds. Let $\beta' = \beta \ln[\beta]$ s.t. $O(e^{\beta'\alpha + O(\alpha \ln[\beta'])})$ from (2) is less than $e^{\beta\alpha}$. But *G* has $e^{\beta\alpha}$ many α -mincuts for some α , so statement in (2) is false, and $Pr[G_{p'} \text{ conn}] < \epsilon$ for $p' = 1 - \exp(\beta'/\lambda)$
 - So $p_+, p_- = 1 \exp\left(\frac{\beta \pm O(\ln\lceil\beta\rceil)}{\lambda}\right)$. Some more work to get additive $\pm O((\ln \lambda)/\lambda)$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ のへで

• Tight connectivity threshold for all $\underline{\delta}$ -regular, $\underline{\delta}$ -connected simple graphs for $\underline{\delta} \ge \sqrt{n}$: $p_c, p_+, p_- = \frac{\ln n}{\delta} \pm O(\frac{1}{\delta})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 の Q @

- Tight connectivity threshold for all $\frac{\delta$ -regular, δ -connected simple graphs for $\delta \ge \sqrt{n}$: $p_c, p_+, p_- = \frac{\ln n}{\delta} \pm O(\frac{1}{\delta})$
- All three conditions (δ-regular, δ-connected, δ ≥ √n) are necessary!

- Tight connectivity threshold for all $\underline{\delta}$ -regular, $\underline{\delta}$ -connected simple graphs for $\underline{\delta} \ge \sqrt{n}$: $p_c, p_+, p_- = \frac{\ln n}{\underline{\delta}} \pm O(\frac{1}{\underline{\delta}})$
- All three conditions (δ-regular, δ-connected, δ ≥ √n) are necessary!
- Main tool: Kawarabayashi-Thorup graph decomposition
 [KT'18]

▲□▶▲□▶▲□▶▲□▶ □ クタペ

- Tight connectivity threshold for all $\frac{\delta$ -regular, δ -connected simple graphs for $\delta \ge \sqrt{n}$: $p_c, p_+, p_- = \frac{\ln n}{\delta} \pm O(\frac{1}{\delta})$
- All three conditions (δ-regular, δ-connected, δ ≥ √n) are necessary!
- Main tool: Kawarabayashi-Thorup graph decomposition
 [KT'18]
 - Structural representation of all α -mincuts based on decomp.

- Tight connectivity threshold for all $\frac{\delta$ -regular, δ -connected simple graphs for $\delta \ge \sqrt{n}$: $p_c, p_+, p_- = \frac{\ln n}{\delta} \pm O(\frac{1}{\delta})$
- All three conditions (δ-regular, δ-connected, δ ≥ √n) are necessary!
- Main tool: Kawarabayashi-Thorup graph decomposition
 [KT'18]
 - Structural representation of all α -mincuts based on decomp.

 Thm: for any simple graph with minimum degree ≥ √n, the number of α-mincuts is at most Õ(n)^α for all α ≥ 1

CT for Dense, Well-Connected Graphs

- Tight connectivity threshold for all $\frac{\delta$ -regular, δ -connected simple graphs for $\delta \ge \sqrt{n}$: $p_c, p_+, p_- = \frac{\ln n}{\delta} \pm O(\frac{1}{\delta})$
- All three conditions (δ-regular, δ-connected, δ ≥ √n) are necessary!
- Main tool: Kawarabayashi-Thorup graph decomposition
 [KT'18]
 - Structural representation of all α -mincuts based on decomp.

・ロト・日本・日本・日本・日本

 Thm: for any simple graph with minimum degree ≥ √n, the number of α-mincuts is at most Õ(n)^α for all α ≥ 1

• $\implies \beta \approx \ln n \text{ for } \delta$ -regular, δ -connected, $\delta \ge \sqrt{n}$ and $p_c, p_+, p_- = \frac{\ln n}{\delta} \pm O(\frac{\ln \ln n}{\delta})$

CT for Dense, Well-Connected Graphs

- Tight connectivity threshold for all $\frac{\delta$ -regular, δ -connected simple graphs for $\delta \ge \sqrt{n}$: $p_c, p_+, p_- = \frac{\ln n}{\delta} \pm O(\frac{1}{\delta})$
- All three conditions (δ-regular, δ-connected, δ ≥ √n) are necessary!
- Main tool: Kawarabayashi-Thorup graph decomposition
 [KT'18]
 - Structural representation of all α -mincuts based on decomp.

 Thm: for any simple graph with minimum degree ≥ √n, the number of α-mincuts is at most Õ(n)^α for all α ≥ 1

• $\implies \beta \approx \ln n$ for δ -regular, δ -connected, $\delta \ge \sqrt{n}$ and $p_c, p_+, p_- = \frac{\ln n}{\delta} \pm O(\frac{\ln \ln n}{\delta})$

• To get $\frac{\ln n}{\delta} \pm O(\frac{1}{\delta})$, open box of KT graph decomp.

CT for Dense, Well-Connected Graphs

- Tight connectivity threshold for all $\frac{\delta$ -regular, δ -connected simple graphs for $\delta \ge \sqrt{n}$: $p_c, p_+, p_- = \frac{\ln n}{\delta} \pm O(\frac{1}{\delta})$
- All three conditions (δ-regular, δ-connected, δ ≥ √n) are necessary!
- Main tool: Kawarabayashi-Thorup graph decomposition
 [KT'18]
 - Structural representation of all α -mincuts based on decomp.
- Thm: for any simple graph with minimum degree ≥ √n, the number of α-mincuts is at most Õ(n)^α for all α ≥ 1

• $\implies \beta \approx \ln n$ for δ -regular, δ -connected, $\delta \ge \sqrt{n}$ and $p_c, p_+, p_- = \frac{\ln n}{\delta} \pm O(\frac{\ln \ln n}{\delta})$

- To get $\frac{\ln n}{\delta} \pm O(\frac{1}{\delta})$, open box of KT graph decomp.
- For $p = \frac{\ln n + c}{\delta}$, $\Pr[\text{conn}] = e^{-e^{-c}} \pm o(1)$, generalizing Erdos-Renyi for the complete graph

Open questions

• Conjecture: threshold width is $O(1/\lambda)$ for all graphs

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへで

- Conjecture: threshold width is $O(1/\lambda)$ for all graphs
 - Need to tighten union bound over all α -mincuts; techniques could see other applications

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

- Conjecture: threshold width is $O(1/\lambda)$ for all graphs
 - Need to tighten union bound over all α -mincuts; techniques could see other applications
 - Parameter β only depends on the "worst" α ; may need to look at all values of α

▲□▶▲□▶▲□▶▲□▶ □ クタペ

- Conjecture: threshold width is $O(1/\lambda)$ for all graphs
 - Need to tighten union bound over all α -mincuts; techniques could see other applications
 - Parameter β only depends on the "worst" α ; may need to look at all values of α
- *β* is difficult to compute; is there a more efficiently computable substitute for *β*?

▲□▶▲□▶▲□▶▲□▶ □ クタペ

- Conjecture: threshold width is $O(1/\lambda)$ for all graphs
 - Need to tighten union bound over all α -mincuts; techniques could see other applications
 - Parameter β only depends on the "worst" α ; may need to look at all values of α
- *β* is difficult to compute; is there a more efficiently computable substitute for β?
 - Related to the network (un)reliability problem: given *p*, compute the approximate probability of connectivity