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for a parameter β based on the

number of approximate mincuts of the graph



CT and Approx. Mincuts
Example graphs



CT and Approx. Mincuts
Example graphs

• Barbell graph



CT and Approx. Mincuts
Example graphs

• Barbell graph

• Pr[conn] ≈ prob. that λ independent Bernoulli(p)’s all flip
tails =⇒ pc ∼ 1/λ



CT and Approx. Mincuts
Example graphs

• Barbell graph

• Pr[conn] ≈ prob. that λ independent Bernoulli(p)’s all flip
tails =⇒ pc ∼ 1/λ

• λ-regular expander



CT and Approx. Mincuts
Example graphs

• Barbell graph

• Pr[conn] ≈ prob. that λ independent Bernoulli(p)’s all flip
tails =⇒ pc ∼ 1/λ

• λ-regular expander
• only “important” cuts are the degree cuts of size λ



CT and Approx. Mincuts
Example graphs

• Barbell graph

• Pr[conn] ≈ prob. that λ independent Bernoulli(p)’s all flip
tails =⇒ pc ∼ 1/λ

• λ-regular expander
• only “important” cuts are the degree cuts of size λ
• n of them, they’re pairwise “almost” independent



CT and Approx. Mincuts
Example graphs

• Barbell graph

• Pr[conn] ≈ prob. that λ independent Bernoulli(p)’s all flip
tails =⇒ pc ∼ 1/λ

• λ-regular expander
• only “important” cuts are the degree cuts of size λ
• n of them, they’re pairwise “almost” independent
• each must fail with prob. ∼ 1/n for union bound



CT and Approx. Mincuts
Example graphs

• Barbell graph

• Pr[conn] ≈ prob. that λ independent Bernoulli(p)’s all flip
tails =⇒ pc ∼ 1/λ

• λ-regular expander
• only “important” cuts are the degree cuts of size λ
• n of them, they’re pairwise “almost” independent
• each must fail with prob. ∼ 1/n for union bound

• pc ∼
ln n
λ

: each fails with prob.
(

1 −
ln n
λ

)λ

≈ e− ln n = 1/n



CT and Approx. Mincuts
Example graphs

• Barbell graph

• Pr[conn] ≈ prob. that λ independent Bernoulli(p)’s all flip
tails =⇒ pc ∼ 1/λ

• λ-regular expander
• only “important” cuts are the degree cuts of size λ
• n of them, they’re pairwise “almost” independent
• each must fail with prob. ∼ 1/n for union bound

• pc ∼
ln n
λ

: each fails with prob.
(

1 −
ln n
λ

)λ

≈ e− ln n = 1/n

• Observation: if B many cuts of size αλ, then for p ∼
ln B
αλ

:

with constant prob., none of them fail



CT and Approx. Mincuts
Our result



CT and Approx. Mincuts
Our result

• Observation: if B many cuts of size αλ, then for p ∼
ln B
αλ

:

with constant prob., none of them fail



CT and Approx. Mincuts
Our result

• Observation: if B many cuts of size αλ, then for p ∼
ln B
αλ

:

with constant prob., none of them fail
• [This work] This is the only factor limiting CT!



CT and Approx. Mincuts
Our result

• Observation: if B many cuts of size αλ, then for p ∼
ln B
αλ

:

with constant prob., none of them fail
• [This work] This is the only factor limiting CT!

• Let β > 0 be the minimum s.t. G has at most eβα many
α-mincuts for every α ≥ 1. Then,

pc , p+, p− = 1 − e−β/λ ± O
( ln λ

λ

)
.



CT and Approx. Mincuts
Our result

• Observation: if B many cuts of size αλ, then for p ∼
ln B
αλ

:

with constant prob., none of them fail
• [This work] This is the only factor limiting CT!

• Let β > 0 be the minimum s.t. G has at most eβα many
α-mincuts for every α ≥ 1. Then,

pc , p+, p− = 1 − e−β/λ ± O
( ln λ

λ

)
.

• “Union bound over approx. mincuts is almost tight for CT”



CT and Approx. Mincuts
Our result

• Observation: if B many cuts of size αλ, then for p ∼
ln B
αλ

:

with constant prob., none of them fail
• [This work] This is the only factor limiting CT!

• Let β > 0 be the minimum s.t. G has at most eβα many
α-mincuts for every α ≥ 1. Then,

pc , p+, p− = 1 − e−β/λ ± O
( ln λ

λ

)
.

• “Union bound over approx. mincuts is almost tight for CT”

• Threshold width of O
( ln λ

λ

)



CT and Approx. Mincuts
Our result

• Observation: if B many cuts of size αλ, then for p ∼
ln B
αλ

:

with constant prob., none of them fail
• [This work] This is the only factor limiting CT!

• Let β > 0 be the minimum s.t. G has at most eβα many
α-mincuts for every α ≥ 1. Then,

pc , p+, p− = 1 − e−β/λ ± O
( ln λ

λ

)
.

• “Union bound over approx. mincuts is almost tight for CT”

• Threshold width of O
( ln λ

λ

)

Example graphs



CT and Approx. Mincuts
Our result

• Observation: if B many cuts of size αλ, then for p ∼
ln B
αλ

:

with constant prob., none of them fail
• [This work] This is the only factor limiting CT!

• Let β > 0 be the minimum s.t. G has at most eβα many
α-mincuts for every α ≥ 1. Then,

pc , p+, p− = 1 − e−β/λ ± O
( ln λ

λ

)
.

• “Union bound over approx. mincuts is almost tight for CT”

• Threshold width of O
( ln λ

λ

)

Example graphs

• Complete graph: β = ln n, pc = 1 − e− ln n/n ≈
ln n
n



CT and Approx. Mincuts
Our result
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.

• “Union bound over approx. mincuts is almost tight for CT”

• Threshold width of O
( ln λ
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)

Example graphs

• Complete graph: β = ln n, pc = 1 − e− ln n/n ≈
ln n
n

• d-dim. hypercube (n = 2d ): β = ln n = d ln 2,
pc = 1 − e−(d ln 2)/d = 1/2
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• Let β > 0 be the minimum s.t. (1) holds. Let β′ = β − lndβe
s.t. O(eβ′α+O(α lndβ′e)) from (2) is less than eβα. But G has
eβα many α-mincuts for some α, so statement in (2) is
false, and Pr[Gp′ conn] < ε for p′ = 1 − exp(β′/λ)
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λ

)
. Some more work to

get additive ±O
(
(ln λ)/λ

)



CT for Dense, Well-Connected Graphs
Our result



CT for Dense, Well-Connected Graphs
Our result

• Tight connectivity threshold for all δ-regular, δ-connected

simple graphs for δ &
√

n: pc , p+, p− =
ln n
δ

± O
(1
δ

)



CT for Dense, Well-Connected Graphs
Our result

• Tight connectivity threshold for all δ-regular, δ-connected

simple graphs for δ &
√

n: pc , p+, p− =
ln n
δ

± O
(1
δ

)

• All three conditions (δ-regular, δ-connected, δ ≥
√

n) are
necessary!



CT for Dense, Well-Connected Graphs
Our result

• Tight connectivity threshold for all δ-regular, δ-connected

simple graphs for δ &
√

n: pc , p+, p− =
ln n
δ

± O
(1
δ

)

• All three conditions (δ-regular, δ-connected, δ ≥
√

n) are
necessary!

• Main tool: Kawarabayashi-Thorup graph decomposition
[KT’18]



CT for Dense, Well-Connected Graphs
Our result

• Tight connectivity threshold for all δ-regular, δ-connected

simple graphs for δ &
√

n: pc , p+, p− =
ln n
δ

± O
(1
δ

)

• All three conditions (δ-regular, δ-connected, δ ≥
√

n) are
necessary!

• Main tool: Kawarabayashi-Thorup graph decomposition
[KT’18]

• Structural representation of all α-mincuts based on decomp.



CT for Dense, Well-Connected Graphs
Our result

• Tight connectivity threshold for all δ-regular, δ-connected

simple graphs for δ &
√

n: pc , p+, p− =
ln n
δ

± O
(1
δ

)

• All three conditions (δ-regular, δ-connected, δ ≥
√

n) are
necessary!

• Main tool: Kawarabayashi-Thorup graph decomposition
[KT’18]

• Structural representation of all α-mincuts based on decomp.
• Thm: for any simple graph with minimum degree ≥

√
n, the

number of α-mincuts is at most Õ(n)α for all α ≥ 1
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)

• To get
ln n
δ

± O
(1
δ

)
, open box of KT graph decomp.

• For p =
ln n + c

δ
, Pr[conn] = e−e−c

± o(1), generalizing

Erdos-Renyi for the complete graph
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• Conjecture: threshold width is O(1/λ) for all graphs
• Need to tighten union bound over all α-mincuts; techniques

could see other applications
• Parameter β only depends on the “worst” α; may need to

look at all values of α

• β is difficult to compute; is there a more efficiently
computable substitute for β?

• Related to the network (un)reliability problem: given p,
compute the approximate probability of connectivity


