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e Tight connectivity threshold and width known for
e Complete graph: pe,p+,p- = InTn + 0(1) [Erdos Renyi’59]
e d-dim. hypercube (n = 2%): pe, p+, p— = fio( ) [Bur'77]
e Hamming graphs, product graphs

e Threshold width for general graphs
e Mincut X: width O(1/v/)A) [Margulis'74]

Our results

¢ Tight connectivity threshold for all 9-regular, 6-connected

simple graphs for § > f' Pe, Py, P- = Inén + O(i)

e Threshold width of O( ) for general graphs

® pc,p,p. = In)\,@ + O(ln)\)‘) for a parameter 3 based on the

number of approximate mincuts of the graph
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e “Union bound over approx. mincuts is almost tight for CT”

e Threshold width of O(InT)‘)

Example graphs

e Complete graph: S =1Inn, p. =1—e~""/" x Inn

e d-dim. hypercube (n = 2%): s =Inn=dIn2,
pC = 1—ef(d|n2)/d = 1/2
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Let 8 > 0 be the minimum s.t. (1) holds. Let 3/ = 5 — In[]
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Sop;,p- =1—exp (%)
get additive £O((In\)/A)

. Some more work to
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Tight connectivity threshold for all §-regular, 4- connected

simple graphs for § > /n: pc, P+, p— = Inn iO(é)

All three conditions (6-regular, 4- connected d > /n) are
necessary!

Main tool: Kawarabayashi-Thorup graph decomposition
[KT'18]

e Structural representation of all «-mincuts based on decomp.
Thm: for any simple graph with minimum degree > /n, the
number of a-mincuts is at most O(n)* for all o > 1

e — 3= Inn for é-regular, §-connected, § > v/n and

| Inl
P,P+.P- = % 050
In
To get T + O( ) open box of KT graph decomp.
Forp = nn 5+ , Priconn] = e~®"° + 0(1), generalizing

Erdos-Renyi for the complete graph
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Open questions

¢ Conjecture: threshold width is O(1/)) for all graphs
e Need to tighten union bound over all a-mincuts; techniques
could see other applications
e Parameter 3 only depends on the “worst” «; may need to
look at all values of «
e [ is difficult to compute; is there a more efficiently
computable substitute for 3?
e Related to the network (un)reliability problem: given p,
compute the approximate probability of connectivity



